[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
558(2): 2023/07/19(水)23:26 ID:5c8G/zZc(4/5) AAS
>>553
>ここで、”確率測度”をしっかり議論すれば
>”ハマリ”が分かるということかな?w
1)まず >>503より再録
さて、箱が有限m個の場合を
mが可算無限の場合に拡張しましょう
箱に区間[0,1](一様分布)の任意の実数を
入れるのは同じ
各箱は、独立同分布(iid)とします
どの箱も、箱が一つの場合と同じです
Ω=区間[0,1]
いま、区間[0,1]にルベーグ測度を入れます
Fは、ルベーグ測度のσ -加法族
Pは、Fをルベーグ測度で評価したときの非負実関数(確率測度)
とします
ここで、もしFとして一点r 0<= r <=1 とすると
確率は0です
2)時枝さんの初期状態 可算無限個の箱が1列で、箱に数が入っている
各箱は、独立とする
他の箱の影響を受けない
任意の箱の中の数当て確率0
他の箱を開けても影響なし
列の並べ替え関係なし
これが、通常の”確率測度”による議論ですね
決定番号は、、別途
560: 2023/07/19(水)23:33 ID:4yn9tDSJ(18/19) AAS
>>558
論じてる確率空間が違います
話になりません
567(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/07/20(木)11:29 ID:I85baJ5b(2/10) AAS
>>561-562
>>>559
>>デタラメ記事「箱入り無数目」
>どこがどうデタラメなのか詳しくお願いします
では、本題です
1)「箱入り無数目」では、初期状態の確率測度をすっぽかしている
つまり、最初の1列で箱に数を入れ終わって、全ての箱が閉じられている状態
これは、>>558で扱いました
2)なぜ、これが重要かというと、「箱入り無数目」では、何列に並べ替えるかは決まっていない
とすると、どの箱が「箱入り無数目」の的中対象になる箱かは未定です
だから、初期状態の確認は大事です
もっと言えば、2列であるm番目の箱が当たるとする。しかし、100列ではm’番目の箱が当たる
では、2列におけるm’番目の確率はどうか? 逆に、100列におけるm番目の確率はどうか?
ここらをスルーすることで、「箱入り無数目」は めくらましをしている
3)さて、箱にコイントスで{0,1}を入れると、確率1/2
サイコロで1~6を入れると、確率1/6
宝くじで、1~1億の数を入れると、確率1/1億
初期状態の確率を考えると、数当ての難易度には、大きな差ができるはず
ところが、「箱入り無数目」では、初期状態の確率測度による難易度の依存性が消えている
単に、2列で1/2、100列で99/100という
確率測度を考えると、「箱入り無数目」の矛盾が見えてくる
そいうことでは、ないでしょうか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.044s