[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
524
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/07/19(水)12:01 ID:nRDluDzX(2/11) AAS
>>523
つづき

(参考)
旧ガロアスレ20 (512 2016/07/03 確率論の専門家さん来訪 ID:f9oaWn8AID:1JE/S25W
2chスレ:math
1)
 519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A [4/13]
>>518
X=(X_1,X_2,…)をR値の独立な確率変数とする.
時枝さんのやっていることは
無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める.
無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める.
P(f(X)=X_{g(X)})=99/100
ということだが,それの証明ってあるかな?
100個中99個だから99/100としか言ってるようにしか見えないけど.
 522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A [5/13]
面倒だから二列で考えると
Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布
実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると
P(h(Y)>h(Z))=1/2であれば嬉しい.
hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明
(529の修正 (R,B(R))ではなくすべて(R^N,B(R^N))だな を入れた)

2)
 528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A [8/13]
おれが問題視してるのはの可測性
正確にかくために確率空間(Ω,F,P)を設定しよう
Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である.
もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば
h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど
hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない
 532 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:15:17.47 ID:f9oaWn8A [11/13]
>>530
> 2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
(引用終り)
以上
527
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/07/19(水)14:53 ID:nRDluDzX(3/11) AAS
>>524追加引用

現代数学の系譜11 ガロア理論を読む20 2ch
2chスレ:math
532 132人目の素数 2016/07/03 ID:f9oaWn8A 11/13
>>530
> 2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう

534 132人目の素数 2016/07/03 ID:/kjhINs/ 14/15
>>532
>>530を読めば明らかだと思うが、俺は
『非可測集合R^N/~を"経由"してよいとする』
という仮定を貴方より拡大解釈している
hは非可測であり、これが問題だというのは俺も同意。記事も同じ
そこに目をつぶり、2個の自然数が与えられたとして確率を計算している

535 132人目の素数 2016/07/03 ID:f9oaWn8A 12/13
>>534
非可測であることに目をつぶって計算することの意味をあまり感じないな
直感的に1/2とするのは微妙.
むしろ初めの問題にたちもどって,無限列から一個以外を見たとこでその一個は決定できないだろうと考えるのが
直感的にも妥当だろう

542 132人目の素数 2016/07/04 ID:1JE/S25W 1/3
時枝氏の主な主張は次の2つだろうだろう
1. 確率論を測度論をベースに展開する必要が無い
2. 無限族の独立性の定義は微妙

しかし1に関していうと時枝氏の解法は,現在の測度論から導かれる解釈のほうが自然.
(当てられっこないという直感どおり,実際当てられないという結論が導かれる)
2に関して言うとそもそも時枝氏の勘違い.
時枝氏の考える独立の定義と,現代の確率論の定義は可算族に対しては同値である

564 132人目の素数 2016/07/04 ID:1JE/S25W 3/3
>>563
ごめん,少し誤解があった
時枝氏の方法は「確率は計算できない」が今の確率論の答えだと思う.
確率0というのは,可測となるような選び方をしたら,それがどのような選び方でも確率は0になるだろうってこと
残す番号を決める写像Nが可測で,また開けた箱から実数を決める写像Yが可測ならば
P(X_N=x)=0が導かれるだろう
(引用終り)
以上
707
(6): 2023/07/26(水)13:33 ID:gX0O22uw(3/5) AAS
>>699
>>1)可算無限長数列の決定番号の期待値は、無限大に発散している
>この期待値の確率空間を教えてもらえますか?

ゼミの先生の疑問符が、ついたようだ>>700
とりあえず私はスルーw

1)まず、任意の決定番号 dが、自然数Nの元であることは、>>701の2)に書いた
 逆に、任意のd∈Nをとって、dから先が一致する同値類内の無限列を構成出来て(d-1番目は不一致)
 それを例えば無限列rxとして、rxを代表とできるから、rxのdを決定番号とできる
 よって、一つの同値類における代表dの集合をDと書くと、D=Nだね
2)さて、「箱入り無数目」の一つの同値類内の可算無限列の集合をΩとして
 つまり rx∈Ω で、Ωは非可算濃度であることは、>>661などに書いた
 Ωの一つの元 rxから、決定番号dが決まり、dは自然数である
 >>524の関数hを借用して
 h:Ω→D(=N) を考える
 この逆関数 h^-1 を考える。あるdに対応する Ωの元たち(無限列rxたち)は、多数ある
 明らかに、dの増加に対して、Ωの元たちの濃度は増大する(証明はいままで述べたので略す)
 だから、Ωを考えて、決定番号Dの期待値(平均値)を、考えると、N同様発散している(証明は背理法による(>>702の2)))
 なお、強調しておくが、上記のとおり決定番号Dは、一様分布ではない(dを決める代表の分布を反映する)
(また、確率論のプロなら、関数hの可測性を問題にするかもね。この関数の可測性は、ヴィタリの集合の非可測とは異なることを付言しておく)
3)ああ、この期待値の確率空間だったね
 確率空間の記号を下記にならって、 (Ω, F, P) としよう
 但し、いまの場合Ωは、発散する非正則分布なので、コルモゴロフの公理 P(Ω)=1は満たせない
(詳しくは、2chスレ:math 非正則事前分布を見よ >>601
 Fは、「事象 d > Dの期待値」からなる
 P(d > Dの期待値)=0 です

(参考)
外部リンク[html]:www.math.kobe-u.ac.jp
樋口保成 神戸大
講義情報
外部リンク[pdf]:www.math.kobe-u.ac.jp
1.1. 確率空間
1.1.4 確率と確率空間
確率空間 (Ω, F, P)
以上
795
(4): 2023/07/28(金)18:26 ID:GoaFG8py(7/7) AAS
>>794 (なくよウグイス平安京だっけw)

>>(しらんけど(私も詳しくないので、外しているかもだが))
>はい、見事に外してます

某N大O研のゼミでは、それでは答えになってないのでは? (数学の議論になってないぞw)
まあ、あんたは必死に、確率空間についても、同様に”逃げで”打っているけどw

確率空間、関数の可測性、測度論、確率測度、その全てに弱そうだねw
もし某ゼミなら、次々質問のアラシで、黒板ハリツケかもな

いまの関数の可測性の問題視は、>>524に引用した確率論の専門家さんも同様だね
プロの目の付け所かもね

「ボレル代数が・・」「逆像どうなっているかぁ~」と言われても
私も即答できるレベルでないのが、残念だがww
しかし、あんたより私が、ましかもよ
796
(2): 2023/07/28(金)19:31 ID:zikikevF(22/32) AAS
>>795
>まあ、あんたは必死に、確率空間についても、同様に”逃げで”打っているけどw
逃げとは?

>いまの関数の可測性の問題視は、>>524に引用した確率論の専門家さんも同様だね
え?
確率論の専門家が何をどう勘違いしてるかさんざん解説したのに未だ分かってなかったの?
馬鹿?
797: 2023/07/28(金)19:44 ID:zikikevF(23/32) AAS
>>795
>いまの関数の可測性の問題視は、>>524に引用した確率論の専門家さんも同様だね
>プロの目の付け所かもね
そもそも>>724はφの可測性なんてまったく関係無い
実際耄碌爺さんはそこにまったく触れてない
おサルが言い出したことだ ⇒ >逆像を問題にしているのは、下記の”関数の可測性”を問題にしているってことだろう

>プロの目の付け所かもね
え?
おサルは自分がプロだと言いたいの?暑さで発狂した?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.044s