[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
503
(9): 2023/07/17(月)15:17 ID:LrNVuBcU(7/14) AAS
>>502
さて、箱が有限m個の場合を
mが可算無限の場合に拡張しましょう

箱に区間[0,1](一様分布)の任意の実数を
入れるのは同じ

各箱は、独立同分布(iid)とします
どの箱も、箱が一つの場合と同じです

Ω=区間[0,1]
いま、区間[0,1]にルベーグ測度を入れます
Fは、ルベーグ測度のσ -加法族
Pは、Fをルベーグ測度で評価したときの非負実関数(確率測度)
とします

ここで、もしFとして一点r 0<= r <=1 とすると
確率は0です
(一点rは、零集合ですから)
時枝さんの場合は、これです

mが可算無限の場合に拡張できることは
下記の重川 確率論基礎をご参照ください

なお、このあと時枝氏の決定番号を潰しますが
ここで、一旦休憩します

外部リンク[pdf]:www.math.kyoto-u.ac.jp
確率論基礎 重川一郎 平成19年7月23日

P21
X1,X2,... を P(Xi = 1) = p, P(Xi =0)=1 − p となる独立,かつ同分布な確率変数列(簡単に,i.i.d. = independent identically distributed 確率変数列という)
504
(8): 2023/07/17(月)15:58 ID:LrNVuBcU(8/14) AAS
>>503
さて、時枝氏の決定番号を潰します

決定番号は 2chスレ:math
をご参照
箱に区間[0,1](一様分布)の任意の実数を入れます

1)箱がm個の数列が二つ
 s =(s1,s2,s3 ,・・・,sm),
 s'=(s'1, s'2, s'3,・・・,s'm)∈R^mで,
 ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義する(n<m).
 この二つの列が同値なので、少なくとも sm=s'm が成立している
 では一つ前の項で、sm-1=s'm-1 はどうか?
 いま、sm-1とs'm-1とは、区間[0,1](一様分布)の任意の実数だったことを思い出そう
 sm-1=s'm-1は、区間[0,1](一様分布)の一点的中と同じで、その確率0
 従って、有限mの数列におけるしっぽの同値類で
 決定番号がmの確率1、m-1以下の確率0です
2)上記、1)項の決定番号がm-1以下の確率0ですが、ある一つの試行としては存在しえます
 時枝「箱入り無数目」のトリックは、コンピュータの数値実験には乗らないが
 代わりに、思考実験をしましょう
 例えば、sm=s'm=sm-1=s'm-1=π(円周率)とでもして
 sm-2≠s'm-2 と仮定すれば、決定番号sm-1が存在し得ることが分かります
 しかし、その確率は0です
3)さて、さらに思考実験で、いま100列の数列があって、100個の決定番号 d1<d2<・・<d100 となっているとします
 d100 より十分大きな自然数Mが存在して(d100<<M)
 長さMの数列として
 100個の決定番号 d1<d2<・・<d100 の状態を実現できます
 この場合、上記2)の通り その確率は0
(M→∞とした場合が、時枝さんの決定番号で、やはり確率0です)

まとめると
時枝記事の100個の決定番号 d1<d2<・・<d100は
存在するが確率0で、使えないってことです

外部リンク:ja.wikipedia.org
思考実験 (thought experiment)とは、頭の中で想像するのみの実験[1]。科学の基礎原理に反しない限りで、極度に単純・理想化された前提(例えば摩擦のない運動、収差のないレンズなど)で行われるという想定上の実験
505
(1): 2023/07/17(月)18:53 ID:5uwGGghW(8/12) AAS
>>503
Ω=[0,1]はあなたが勝手に設定した標本空間ですね。
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」から分かる通り、時枝先生が設定した標本空間はΩ={1,2,...,100}です。
時枝先生はこの設定ならば「めでたく確率99/100で勝てる」が結論されることを示されました。

もしあなたがこの結論に不服ならば、あなたが為すべきは、
・Ω={1,2,...,100}と設定できないこと
・Ω={1,2,...,100}と設定しても「めでたく確率99/100で勝てる」が結論されないこと
のいずれかを示すことです。

「Ω=[0,1]なら勝てない」という主張は、箱入り無数目の問い「勝つ戦略はあるでしょうか?」への回答として意味を為しません。

分かりますか?分かりませんか?
507
(1): 2023/07/17(月)20:01 ID:LrNVuBcU(9/14) AAS
>>505
>Ω=[0,1]はあなたが勝手に設定した標本空間ですね。
>「Ω=[0,1]なら勝てない」という主張は、箱入り無数目の問い「勝つ戦略はあるでしょうか?」への回答として意味を為しません。

いいえΩ=[0,1]は
下記のSergiu Hart氏のPDF Choice Games からのパクリです
Sergiu Hart氏は、”When the number of boxes is finite”の条件を付していますが
finite→可算無限(実は非可算も)に拡張できることは、>>503の”確率論基礎 重川一郎”(これに限らず)にあります

2chスレ:math
外部リンク[pdf]:www.ma.huji.ac.il
Sergiu Hart
Choice Games November 4, 2013
P2
Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively.
(引用終り)

初期条件は 2chスレ:math
(数学セミナー201511月号の記事) 「箱入り無数目」抜粋
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.」
です

つまり、区間[0,1]の任意の実数を入れることは、時枝氏の記事の前提条件を満たす
だから、ここから反例が構成できれば、時枝氏の記事の反例になります
分かりますか? >>503-504を熟読願います
509
(1): 2023/07/17(月)20:30 ID:NyI8GqsK(1/2) AAS
>>501-503の確率空間って、箱入り無数目におけるいかなる
試行とも対応してないからナンセンスだね。池沼ですか?
514
(1): 2023/07/17(月)22:52 ID:LrNVuBcU(12/14) AAS
>>509
>>>501-503の確率空間って、箱入り無数目におけるいかなる
>試行とも対応してないからナンセンスだね。池沼ですか?

大学で確率論の単位未取得なんだね?
 >>503の確率空間は、時枝の初期状態 つまり最初の一列の状態に対応しているんだ
これが、時枝さんの誤魔化しを理解する第一歩なんだよ

これを示すことで、時枝さんの論法は
「ある箱の確率が、0→99/100に変化する」というデタラメな主張だと
はっきり分かる仕掛けなのです!
532
(8): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/07/19(水)15:57 ID:nRDluDzX(6/11) AAS
>>526
>確率論の専門家「時枝は Q⇒箱入り無数目成立 と言ってるが、Qの証明が無い。」
>時枝先生「Q⇒箱入り無数目成立 と言ってない。箱入り無数目の前提条件にQは不要。」

なるほど
あなたは、時枝「箱入り無数目」は
無条件で成立すると主張するのですか?

さて
1)「箱入り無数目」が、既存の確率過程論 ランダムウォーク理論
 例えば、下記 重川 P45と バッティングするという認識はありますか?
 つまり、重川 P45にあるように、連続時間をパラメータとした確率変数の族 (Xt)で
 ある区間[t',t'']の中に 可算無限個の t'<t1<t2<・・<t''が取れて
 時枝「箱入り無数目」が正しければ、t1<t2<・・たちに対応するXtの値から、あるti (i∈N)が存在して
 Xtiの値が、確率99/100で的中できることになる
 これはヘンです
2)同じことが、関数論を使って言える
 ある関数f:[t',t'']→R で
 関数fは、連続さえ仮定しない(不連続可)とする
 区間[t',t'']の中に 可算無限個の t'<t1<t2<・・<t''が取れて
 上記同様、t1<t2<・・たちに対応するf(t)の値から、あるti (i∈N)が存在して
 f(ti)の値が、確率99/100で的中できることになる
 fが正則ならばともかく、不連続な関数ですから
 これはヘンです

(参考)>>503より再録
外部リンク[pdf]:www.math.kyoto-u.ac.jp
確率論基礎 重川一郎 平成19年7月23日

P45
定義 1.1. 時間 t ∈ T をパラメーターとして持つ確率変数の族 (Xt) を確率過程という.T
として [0, ∞), Z + = {0, 1, 2,... } などがよく使われる.[0, ∞) のとき連続時間,Z + のとき
離散時間という.
(引用終り)
以上
533: 2023/07/19(水)15:58 ID:TLXvfCRC(3/3) AAS
箱入り無数目には別バージョン(または拡張)設定が
ありうる。出題者がたくさんいて回答者が一人の場合
出題者が一人で、回答者がたくさんいる場合
これだけでも設定はまったく異なり、対応する確率空間
は異なる。(なお、1が提示した>>501-503
の確率空間は箱入り無数目におけるいかなる設定・試行
とも対応していないのでナンセンス。)
しかし、基本的には「当てられる」という事実はある。
「100人の数学者バージョン」ね。
これを否定している数学者なんていないわけ。

「当てられる」という事実が直観に反するから
「間違ってるに違いない」というのは
単なる素人の勘違い。その勘違いを確率論で
正当化しようということこそドツボであり「ハマり」。
558
(2): 2023/07/19(水)23:26 ID:5c8G/zZc(4/5) AAS
>>553
>ここで、”確率測度”をしっかり議論すれば
>”ハマリ”が分かるということかな?w

1)まず >>503より再録
さて、箱が有限m個の場合を
mが可算無限の場合に拡張しましょう
箱に区間[0,1](一様分布)の任意の実数を
入れるのは同じ
各箱は、独立同分布(iid)とします
どの箱も、箱が一つの場合と同じです
Ω=区間[0,1]
いま、区間[0,1]にルベーグ測度を入れます
Fは、ルベーグ測度のσ -加法族
Pは、Fをルベーグ測度で評価したときの非負実関数(確率測度)
とします
ここで、もしFとして一点r 0<= r <=1 とすると
確率は0です

2)時枝さんの初期状態 可算無限個の箱が1列で、箱に数が入っている
 各箱は、独立とする
 他の箱の影響を受けない
 任意の箱の中の数当て確率0
 他の箱を開けても影響なし
 列の並べ替え関係なし

これが、通常の”確率測度”による議論ですね
決定番号は、、別途
618
(1): 2023/07/21(金)22:44 ID:Dpf9+zTy(4/6) AAS
>>612
スレ主です
<「箱入り無数目」とランダムウォーク・ホワイトノイズ>

1)時枝「箱入り無数目」が正しいとすれば、ランダムウォークで
 連続時間 t ∈ T をパラメーターとすると
 至るところ、可算無限個の値がサンプリングできて、
 高確率wで、ランダムウォークの値が推定できることになる。これはヘンだw
2)ホワイトノイズも同様で、
 連続時間 t ∈ T をパラメーターとすると
 至るところ、可算無限個の値がサンプリングできて、
 高確率wで、ホワイトノイズの値が推定できることになる。これはヘンだw

(参考)>>503より再録
外部リンク[pdf]:www.math.kyoto-u.ac.jp
確率論基礎 重川一郎 平成19年7月23日
P45
ランダムウォーク
定義 1.1. 時間 t ∈ T をパラメーターとして持つ確率変数の族 (Xt) を確率過程という.T
として [0, ∞), Z + = {0, 1, 2,... } などがよく使われる.[0, ∞) のとき連続時間,Z + のとき
離散時間という.

外部リンク:ja.wikipedia.org
ホワイトノイズ
(引用終り)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.051s