[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
228
(2): 2023/03/16(木)08:15 ID:viNWkpRf(4/5) AAS
>>227

つづき

L の コバノフホモロジー は、この複体 C(D) のホモロジー H(L) である。コバノフホモロジーは実際に L の不変量となっていて、図形の選択には依存しないことが分かる。H(L) 次数付きオイラー標数は、L のジョーンズ多項式であることも分かる。H(L) は、ジョーンズ多項式以上の L の情報を持っていることが示されているが、完全な詳細は未だ完全には理解されていない。

2006年にドロール・バー-ナタン(英語版)(Dror Bar-Natan)は、任意の結び目のコバノフホモロジー(もしくはカテゴリ)を計算するに十分なコンピュータプログラムを開発した。[1]

関連する理論
コバノフホモロジーでもっとも興味を持たれている側面の一つに、完全系列が形式的に3次元多様体(英語版)のフレアーホモロジーの完全系列に似ていることである。さらに、ゲージ理論やその類似を使い示すことでのみ、結果を再現することがある。ヤコフ・ラスムッセン(英語版)(Jacob Rasmussen)のクロンハイマーとムロフカの定理の別の新しい証明があり、これはミルナー予想の証明である(以下を参照のこと)。予想であるが、コバノフホモロジーをピーター・オズバス(英語版)(Peter Ozsvath)とゾルタン・ザボー(Zoltan Szabo)のフレアーホモロジーに関係づけるスペクトル系列がある(ダンフィールド他の2005年も参照)。別のスペクトル系列 (オズバス-ザボー 2005) は、コバノフホモロジーの変形を結び目に沿った分岐した二重被覆のヒーガードフレアーホモロジーと関係づける。三番目 (ブルーム 2009) は、分岐した二重被覆のモノポールフレアーホモロジーの変形に(コバノフホモロジーが)収束するという結果もある。

つづく
229
(1): 2023/03/16(木)08:15 ID:viNWkpRf(5/5) AAS
>>228
つづき

コバノフホモロジーはリー代数 sl2 の表現論に関係する。

応用
コバノフホモロジーの第一の応用は、ヤコフ・ラスムッセンにより与えられた。彼はコバノフホモロジーを使い、s-不変量(英語版)を定義し、この結び目の整数に値を持つ不変量は、スライス種数(英語版)を有限とし、ミルナー予想を証明することができた。

2010年には、クロンハイマー(英語版)(Peter B. Kronheimer)とムロフカ(英語版)(Tomasz Mrowka)は、コバノフホモロジーが、自明な結び目か否かを識別することを証明した。カテゴリ化された理論は、カテゴリ化されていない理論よりも多くの情報を持ってる。従って、コバノフホモロジーが自明な結び目か否かを識別するからといって、ジョーンズ多項式が自明な結び目か否かを識別するとは限らない。
(引用終り)
以上
230
(1): 2023/03/16(木)09:10 ID:YDR7EwZZ(1) AAS
>>225-229 真逆だね
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.039s