[過去ログ]
純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
純粋・応用数学・数学隣接分野(含むガロア理論)13 http://rio2016.5ch.net/test/read.cgi/math/1674527723/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
228: 132人目の素数さん [] 2023/03/16(木) 08:15:20.28 ID:viNWkpRf >>227 つづき L の コバノフホモロジー は、この複体 C(D) のホモロジー H(L) である。コバノフホモロジーは実際に L の不変量となっていて、図形の選択には依存しないことが分かる。H(L) 次数付きオイラー標数は、L のジョーンズ多項式であることも分かる。H(L) は、ジョーンズ多項式以上の L の情報を持っていることが示されているが、完全な詳細は未だ完全には理解されていない。 2006年にドロール・バー-ナタン(英語版)(Dror Bar-Natan)は、任意の結び目のコバノフホモロジー(もしくはカテゴリ)を計算するに十分なコンピュータプログラムを開発した。[1] 関連する理論 コバノフホモロジーでもっとも興味を持たれている側面の一つに、完全系列が形式的に3次元多様体(英語版)のフレアーホモロジーの完全系列に似ていることである。さらに、ゲージ理論やその類似を使い示すことでのみ、結果を再現することがある。ヤコフ・ラスムッセン(英語版)(Jacob Rasmussen)のクロンハイマーとムロフカの定理の別の新しい証明があり、これはミルナー予想の証明である(以下を参照のこと)。予想であるが、コバノフホモロジーをピーター・オズバス(英語版)(Peter Ozsvath)とゾルタン・ザボー(Zoltan Szabo)のフレアーホモロジーに関係づけるスペクトル系列がある(ダンフィールド他の2005年も参照)。別のスペクトル系列 (オズバス-ザボー 2005) は、コバノフホモロジーの変形を結び目に沿った分岐した二重被覆のヒーガードフレアーホモロジーと関係づける。三番目 (ブルーム 2009) は、分岐した二重被覆のモノポールフレアーホモロジーの変形に(コバノフホモロジーが)収束するという結果もある。 つづく http://rio2016.5ch.net/test/read.cgi/math/1674527723/228
229: 132人目の素数さん [] 2023/03/16(木) 08:15:39.75 ID:viNWkpRf >>228 つづき コバノフホモロジーはリー代数 sl2 の表現論に関係する。 応用 コバノフホモロジーの第一の応用は、ヤコフ・ラスムッセンにより与えられた。彼はコバノフホモロジーを使い、s-不変量(英語版)を定義し、この結び目の整数に値を持つ不変量は、スライス種数(英語版)を有限とし、ミルナー予想を証明することができた。 2010年には、クロンハイマー(英語版)(Peter B. Kronheimer)とムロフカ(英語版)(Tomasz Mrowka)は、コバノフホモロジーが、自明な結び目か否かを識別することを証明した。カテゴリ化された理論は、カテゴリ化されていない理論よりも多くの情報を持ってる。従って、コバノフホモロジーが自明な結び目か否かを識別するからといって、ジョーンズ多項式が自明な結び目か否かを識別するとは限らない。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1674527723/229
230: 132人目の素数さん [] 2023/03/16(木) 09:10:14.27 ID:YDR7EwZZ >>225-229 真逆だね http://rio2016.5ch.net/test/read.cgi/math/1674527723/230
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.047s