[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
225
(2): 2023/03/16(木)08:06 ID:viNWkpRf(1/5) AAS
メモ
外部リンク[html]:www.riken.jp
理化学研究所 2023年3月15日
基礎科学特別研究員インタビュー② 38歳でたどり着いた数学者としての大きな第一歩
理研には、国際的に活躍する研究者の育成を目指し、若手研究者が自ら設定した研究課題を自由な発想で主体的に研究できる「基礎科学特別研究員制度」があります。1989年に始まったこの制度は、現在公募中の2024年度採用で35回目となります。これを機に、各分野で活躍する先輩たちと現役にインタビューしました。第2回は、数理創造プログラム(iTHEMS)の佐野 岳人 基礎科学特別研究員です。
佐野 岳人(サノ・タケト)
数理創造プログラム
2022年4月~基礎科学特別研究員
──東京大学 理学部 数学科を卒業後、9年間ソフトウエアエンジニアとして勤務。その後、31歳で同大学大学院 理科学研究科 修士課程に進まれ、2022年3月に博士課程を修了されたそうですね。

現在は、数学者として数学の一分野である「トポロジー(位相幾何学)」の中でも4次元以下の多様体を扱う「低次元トポロジー」を専門としていますが、実は学部3、4年生の頃、一度数学に挫折しています。その頃、中学時代の先輩に誘われて未踏ソフトウエア創造事業に応募して採用されたことから、大学院には進まずに先輩たちとソフトウエア会社を起業しました。設立から約5年後、会社は株式会社MIXIに買収され、その後私は2013年にヤフー株式会社に転職しました。

その頃は人工知能が盛り上がり始めた時期で、プログラマーの数学に対する課題意識が高まっていたことから、学生時代に数学を専攻していた私は、プログラマー向けの数学の勉強会を開催するようになりました。それを続けるうちに「大学院でもう一度、数学に挑戦したい」と思うようになり、3カ月間の猛勉強の上、再び受験して合格することができました。もともと修士課程修了後は会社に戻る予定でしたが、3年間の修士課程での研究を通してもっと研究を深めたいと考えるようになり、続けて博士課程に進みました。

つづく
226
(2): 2023/03/16(木)08:06 ID:viNWkpRf(2/5) AAS
>>220
つづき

現在、研究している「コバノフホモロジー理論」は修士課程のときに指導教員に勧められたテーマで、特徴はコンピュータを使って計算できること。ここで、自分の得意なプログラミングと以前から興味があったトポロジーが初めて結びつきました。修士課程で、純粋数学においてもプログラミング技術は有用であると知り、博士課程ではもっとそのスキルを生かして研究を深めたいという思いもありました。

──その後、基礎科学特別研究員に応募した理由を聞かせて下さい。

興味を持ったのは大学院の研究室のポスドク研究員2人がともにiTHEMS出身者だったことです。iTHEMSは、数理科学を中心に、分野横断的に研究を進めていくことを掲げていたので、他分野の研究者との交流にも期待しました。見学に行ったところ、雰囲気がすごく明るく、ぜひ一員になりたいと思い応募したのです。今は、自分がやりたい研究を伸び伸びとやらせてもらえる研究環境にとても満足しています。

──基礎科学特別研究員を目指している若手研究者にメッセージをお願いします。

あえて研究者になるかどうか悩んでいる人に言葉を贈りたいと思います。将来がなかなか安定しない研究職は不安も多いと思います。私自身、紆余曲折の末、ようやく数学者としての第一歩を踏み出しました。今では、エンジニア時代の経験が数学者としての強みになっています。もし研究の道に進むことに迷いがあれば、違う道も試しながらチャンスやタイミングが訪れるのを待つのも一つの選択肢としてあって良いと思います。
(取材・構成:山田 久美/撮影:古末 拓也/制作協力:サイテック・コミュニケーションズ)
(引用終り)
以上
227
(2): 2023/03/16(木)08:14 ID:viNWkpRf(3/5) AAS
>>226 訂正 220→>>225
関連
外部リンク:ja.wikipedia.org
コバノフホモロジー( Khovanov homology)は、鎖複体のホモロジーとしてできる向きづけられた結び目の不変量である。コバノフホモロジーはジョーンズ多項式のカテゴリ化(英語版)として考えられる。
コバノフホモロジーは1990年代の終わりに、ミハイル・コバノフ(英語版)(Mikhail Khovanov)により導入された。彼は当時はカリフォルニア大学デービス校に在籍しており、現在はコロンビア大学に所属している。

概要
結び目もしくは絡み目 L を表現する図形 D に、コバノフ括弧 [D]、これは次数付きベクトル空間の鎖複体、を割り当てる。すると、ジョーンズ多項式の構成の中でのカウフマン括弧の類似物となる。次に、[D] を(次数付きベクトル空間の中の)一連の次数シフトと(鎖複体の中の)高さシフトにより正規化して、新しい複体 C(D) を得る。この複体のホモロジーは L の不変量であることが分かり、その次数付きオイラー標数は L のジョーンズ多項式であることが分かる。

定義
(以下の定義はドロール・バー-ナタン(英語版)(Dror Bar-Natan)の論文に沿う。)

次数付きベクトル空間の上の次数シフト 作用素を {l} で表す;すなわち、m 次元内の同次成分は、 m + l へシフトする。

同様にして、鎖複体の上の 高さシフト 作用素を[s] と表す。つまり、r 番目のベクトル空間 もしくは 加群は、(r + s) 番目の場所へ移動し、そのときにすべての微分写像もともにシフトすることになる。

V を次数 1 の生成子 q と次数 ?1 の生成子 q?1 とを持つ次数付きベクトル空間とする。

ここで絡み目 L を表現する任意の図形 D をとる。コバノフホモロジー の公理は次のようになる:


つづく
228
(2): 2023/03/16(木)08:15 ID:viNWkpRf(4/5) AAS
>>227

つづき

L の コバノフホモロジー は、この複体 C(D) のホモロジー H(L) である。コバノフホモロジーは実際に L の不変量となっていて、図形の選択には依存しないことが分かる。H(L) 次数付きオイラー標数は、L のジョーンズ多項式であることも分かる。H(L) は、ジョーンズ多項式以上の L の情報を持っていることが示されているが、完全な詳細は未だ完全には理解されていない。

2006年にドロール・バー-ナタン(英語版)(Dror Bar-Natan)は、任意の結び目のコバノフホモロジー(もしくはカテゴリ)を計算するに十分なコンピュータプログラムを開発した。[1]

関連する理論
コバノフホモロジーでもっとも興味を持たれている側面の一つに、完全系列が形式的に3次元多様体(英語版)のフレアーホモロジーの完全系列に似ていることである。さらに、ゲージ理論やその類似を使い示すことでのみ、結果を再現することがある。ヤコフ・ラスムッセン(英語版)(Jacob Rasmussen)のクロンハイマーとムロフカの定理の別の新しい証明があり、これはミルナー予想の証明である(以下を参照のこと)。予想であるが、コバノフホモロジーをピーター・オズバス(英語版)(Peter Ozsvath)とゾルタン・ザボー(Zoltan Szabo)のフレアーホモロジーに関係づけるスペクトル系列がある(ダンフィールド他の2005年も参照)。別のスペクトル系列 (オズバス-ザボー 2005) は、コバノフホモロジーの変形を結び目に沿った分岐した二重被覆のヒーガードフレアーホモロジーと関係づける。三番目 (ブルーム 2009) は、分岐した二重被覆のモノポールフレアーホモロジーの変形に(コバノフホモロジーが)収束するという結果もある。

つづく
229
(1): 2023/03/16(木)08:15 ID:viNWkpRf(5/5) AAS
>>228
つづき

コバノフホモロジーはリー代数 sl2 の表現論に関係する。

応用
コバノフホモロジーの第一の応用は、ヤコフ・ラスムッセンにより与えられた。彼はコバノフホモロジーを使い、s-不変量(英語版)を定義し、この結び目の整数に値を持つ不変量は、スライス種数(英語版)を有限とし、ミルナー予想を証明することができた。

2010年には、クロンハイマー(英語版)(Peter B. Kronheimer)とムロフカ(英語版)(Tomasz Mrowka)は、コバノフホモロジーが、自明な結び目か否かを識別することを証明した。カテゴリ化された理論は、カテゴリ化されていない理論よりも多くの情報を持ってる。従って、コバノフホモロジーが自明な結び目か否かを識別するからといって、ジョーンズ多項式が自明な結び目か否かを識別するとは限らない。
(引用終り)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.039s