[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
701
(7): 2023/07/26(水)11:06 ID:gX0O22uw(1/5) AAS
スレ主です

>>697
>>>696
>> 1)可算無限長数列の決定番号の期待値は、無限大に発散している
>dmaxが有限なのはなぜ?

1)dmaxが有限は、「箱入り無数目」の設定に合わせたってこと
2)かつ、例えば2列 X,Yで、X列を全部開けて、数列を知り、属する同値類を知るとする
 その同値類の一つの元rx(=無限数列)を取り出して、代表とする
 決定番号dmaxとして、(X,rx)→ dmax が決まる
 無限数列 X,rx は、しっぽが一致していて、dmaxから先は一致していて、dmax-1番目は不一致だ
 dmax∈N(自然数)であり、従ってdmaxは有限の自然数です
702
(8): 2023/07/26(水)11:06 ID:gX0O22uw(2/5) AAS
>>698
>>>696
>> 1)可算無限長数列の決定番号の期待値は、無限大に発散している
>でも「任意の実数列の決定番号は自然数」なんでしょ?あなた認めましたよね?
>じゃあ期待値を考えてもナンセンスじゃん

1)「任意の実数列の決定番号は自然数」は、上記の2)に示した
2)一方、自然数N全体を考える Ω=Nだ。N中にその元nたちは、一様に分布していると仮定する(厳密には、下記コンパクト性定理の”その集合の任意の有限部分集合がモデルを持つ”の表現を借りて言えば、Nの任意の有限部分集合が一様に分布している)
 このとき、期待値(=平均値)は無限大に発散している
 (略証:背理法による。期待値(=平均値)が有限であれば、集合Ωは有限集合でなければならない。Nが無限集合であることに矛盾する)
3)よって、任意のn∈Nは有限であり、常にNの期待値∞よりはるかに小さいことが分かる
(参考)
外部リンク:ja.wikipedia.org
コンパクト性定理(英: Compactness theorem)とは、一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。つまりある理論の充足可能性を示すにはその有限部分についてのみ調べれば良いという非常に有用性の高い定理であり、モデル理論における最も基本的かつ重要な成果のひとつである。
歴史
1930年にゲーデルが可算集合の場合について証明した。非可算の場合については、Anatoly Maltsevが1936年に証明を与えた[1][2]。
応用例
・上方レーヴェンハイム-スコーレムの定理
・国の数が無限である場合の四色定理[3]
・任意の順序集合が全順序に拡大できること [3]
(引用終り)
707
(6): 2023/07/26(水)13:33 ID:gX0O22uw(3/5) AAS
>>699
>>1)可算無限長数列の決定番号の期待値は、無限大に発散している
>この期待値の確率空間を教えてもらえますか?

ゼミの先生の疑問符が、ついたようだ>>700
とりあえず私はスルーw

1)まず、任意の決定番号 dが、自然数Nの元であることは、>>701の2)に書いた
 逆に、任意のd∈Nをとって、dから先が一致する同値類内の無限列を構成出来て(d-1番目は不一致)
 それを例えば無限列rxとして、rxを代表とできるから、rxのdを決定番号とできる
 よって、一つの同値類における代表dの集合をDと書くと、D=Nだね
2)さて、「箱入り無数目」の一つの同値類内の可算無限列の集合をΩとして
 つまり rx∈Ω で、Ωは非可算濃度であることは、>>661などに書いた
 Ωの一つの元 rxから、決定番号dが決まり、dは自然数である
 >>524の関数hを借用して
 h:Ω→D(=N) を考える
 この逆関数 h^-1 を考える。あるdに対応する Ωの元たち(無限列rxたち)は、多数ある
 明らかに、dの増加に対して、Ωの元たちの濃度は増大する(証明はいままで述べたので略す)
 だから、Ωを考えて、決定番号Dの期待値(平均値)を、考えると、N同様発散している(証明は背理法による(>>702の2)))
 なお、強調しておくが、上記のとおり決定番号Dは、一様分布ではない(dを決める代表の分布を反映する)
(また、確率論のプロなら、関数hの可測性を問題にするかもね。この関数の可測性は、ヴィタリの集合の非可測とは異なることを付言しておく)
3)ああ、この期待値の確率空間だったね
 確率空間の記号を下記にならって、 (Ω, F, P) としよう
 但し、いまの場合Ωは、発散する非正則分布なので、コルモゴロフの公理 P(Ω)=1は満たせない
(詳しくは、2chスレ:math 非正則事前分布を見よ >>601
 Fは、「事象 d > Dの期待値」からなる
 P(d > Dの期待値)=0 です

(参考)
外部リンク[html]:www.math.kobe-u.ac.jp
樋口保成 神戸大
講義情報
外部リンク[pdf]:www.math.kobe-u.ac.jp
1.1. 確率空間
1.1.4 確率と確率空間
確率空間 (Ω, F, P)
以上
708
(1): 2023/07/26(水)14:20 ID:gX0O22uw(4/5) AAS
>>703-705
スレ主です

>あなたがしなければならないのは、記事に書かれた通りの戦略で当たらないことを示すこと。

示しました>>701-702 & >>707
つまり、時枝氏の記事の戦略なるものは
・無限数列のしっぽの同値類において、代表とのその決定番号d を得るという
・問題となる無限数列において、予想される決定番号dより大きな値 dmax を何らかの手段で得て
(時枝氏の記事では、他の無限数列の決定番号たちの最大値をdmaxとして)
 dmax+1までの箱を開けて、代表の列を知り、代表列のdmaxの値を、問題のdmax番目の箱の中の数とする
 決定番号d < dmax だから的中できる
という仕掛けです

>>701-702 & >>707で示したのは、そのような”決定番号d < dmax”を満たす dmaxは存在しないこと
即ち、未開封の数列に対しては、決定番号dは未開封ゆえ、数学的には”期待値”として扱われ
数学的に”期待値”(平均値)は、無限大に発散しているゆえ
”決定番号d(期待値) < dmax”は、不可ということ

さらに言えば、「箱入り無数目」は 下記
2chスレ:math
「箱入り無数目」(数学セミナー201511月号の記事)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」だった

つづく
709
(3): 2023/07/26(水)14:22 ID:gX0O22uw(5/5) AAS
つづき

関数論で説明しよう
いま、(連続さえ仮定しない)実関数 f:x→f(x) | x、f(x)∈R で
xの可算無限列 x1,x2,・・ は、至る所にとれ
対応する関数値からなる関数値の可算無限列
f(x1),F2(x2),・・ が取れる
もし、「箱入り無数目」が正しければ、この関数値を箱に入れて、ある箱が他の箱の値から、”ピタリ”と的中できることになる
連続さえ仮定しない関数値であるから、明らかに馬鹿げた話である
さらに、ある区間 例えば区間[0,1]内に、列x1,x2,・・ が取れて、しかも異なる列は可算無限取れる
とすれば、区間[0,1]内に、「箱入り無数目」の”ピタリ”的中関数値が、可算無限取れる?
そんなバカなw
明らかに。「箱入り無数目」なんて、無茶苦茶な設定で、アホの極みです
(原理的に、そんな戦略は ありえない!)

>その確率空間を時枝証明が使ってないなら、勝手にヘンな確率空間を持ち出して勝手にギャアギャア喚いてるだけ、完全にナンセンス
>分かりますか? 分かりませんか?

分かりますよ
命題P:その確率空間を時枝証明が使ってないなら
命題Q:勝手にヘンな確率空間を持ち出して勝手にギャアギャア喚いてるだけ、完全にナンセンス

明示した確率空間は、時枝「箱入り無数目」の確率空間として示した>>701-702 & >>707
よって、”使ってないなら”が、偽です
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.039s