[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
489: 2023/07/17(月)00:58 ID:5uwGGghW(1/12) AAS
分からないことは正直に言った方がいいですよ?
分からないことは恥ではありません。分かった風を装うことが恥なのです。
fixed opponent strategy
が分かりませんか?
opponentとは箱入り無数目における「あなた」のことです
opponent strategyとは箱入り無数目における「あなた」が実数を入れて閉じた可算個の箱のこと、つまり出題列のことです
fixed opponent strategyとは出題列全体の集合の元をひとつ選び固定したものです
分かりますか?分かりませんか?
490: 2023/07/17(月)01:02 ID:5uwGGghW(2/12) AAS
他に分からないところはどこですか?
正直に言いなさい
493: 2023/07/17(月)08:32 ID:5uwGGghW(3/12) AAS
>>491
>相手はプロだから、時枝「箱入り無数目」など、チラ見で分かるだろうw
本人が>>433でまだ分からないと言ってますけどw
繰り返す
>君は勘違いしているが、時枝の「箱入り無数目」は、数学としては大きな欠陥があるのです(測度の指定や高確率w)
どこに欠陥があるのか詳しく頼みますね
494: 2023/07/17(月)08:49 ID:5uwGGghW(4/12) AAS
自分で指摘できないならゼミの先生とやらに頼んで指摘してもらったら?
てか自分で指摘できないのになんで「数学としては大きな欠陥があるのですキリッ」とか言ってんの?頭おかしいの?
496(1): 2023/07/17(月)09:37 ID:5uwGGghW(5/12) AAS
>>495
何を今さらって感じですが、
標本空間:試行の結果全体の集合
確率変数:標本空間の元それぞれに値を割り当てたもの、すなわち試行毎に変化しうる変数
試行毎に変化しえないものは定数
ってことを言いたいのですね?いいですよ?
それで?
497(1): 2023/07/17(月)09:47 ID:5uwGGghW(6/12) AAS
>>495
あなたは「出題列の固定」が気に入らないんですよね?
それの何がどう気に入らないのか早く言ってもらえませんか?
あとあなたの考える箱入り無数目の確率空間を書いてもらえますか?
確率空間、分かりますよね?分かりませんか?
499(4): 2023/07/17(月)10:45 ID:5uwGGghW(7/12) AAS
>>498
>誤魔化さないで
誤魔化しているのは箱入り無数目とは無関係なサイコロの話をし出すあなたです
誤魔化さずに箱入り無数目の確率空間を答えてください
>”「試行」 というのは 「ひとつの操作」 のことで、一般的には繰り返しおこなう操作を考える”
>ここ、いいですか?
いいですよ?
はい、箱入り無数目の確率空間を答えてくださいね、誤魔化すのはやめてください
505(1): 2023/07/17(月)18:53 ID:5uwGGghW(8/12) AAS
>>503
Ω=[0,1]はあなたが勝手に設定した標本空間ですね。
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」から分かる通り、時枝先生が設定した標本空間はΩ={1,2,...,100}です。
時枝先生はこの設定ならば「めでたく確率99/100で勝てる」が結論されることを示されました。
もしあなたがこの結論に不服ならば、あなたが為すべきは、
・Ω={1,2,...,100}と設定できないこと
・Ω={1,2,...,100}と設定しても「めでたく確率99/100で勝てる」が結論されないこと
のいずれかを示すことです。
「Ω=[0,1]なら勝てない」という主張は、箱入り無数目の問い「勝つ戦略はあるでしょうか?」への回答として意味を為しません。
分かりますか?分かりませんか?
506(1): 2023/07/17(月)19:18 ID:5uwGGghW(9/12) AAS
>>504
>時枝記事の100個の決定番号 d1<d2<・・<d100は
>存在するが確率0で、使えないってことです
箱入り無数目が成立するために d1<d2<・・<d100 である必要はありません。(d1,d2,...,d100)∈N^100 であれば十分です。
後者は決定番号の定義から直ちに成立します。
尚、決定番号の定義に有限列は用いないので有限列を考える必要はありませんよ。
510(2): 2023/07/17(月)20:41 ID:5uwGGghW(10/12) AAS
>>507
>つまり、区間[0,1]の任意の実数を入れることは、時枝氏の記事の前提条件を満たす
はい、もちろん満たしますよ?
>だから、ここから反例が構成できれば、時枝氏の記事の反例になります
時枝先生はΩ={1,2,...,100}と設定すれば「めでたく確率99/100で勝てる」が結論されるとおっしゃってるので
あなたは
・Ω={1,2,...,100}と設定できないこと
・Ω={1,2,...,100}と設定しても「めでたく確率99/100で勝てる」が結論されないこと
のいずれかを示さなければなりません。
Ω={1,2,...,100}以外の標本空間を持ち出しても反論の体を為しません。
分かりますか?分かりませんか?
512(1): 2023/07/17(月)20:51 ID:5uwGGghW(11/12) AAS
>>508
>「”一般性を失わずに”、d1<=d2<=・・<=d100」とすれば意味同じ
意味不明です。
箱入り無数目が成立するために d1<=d2<=・・<=d100 である必要はありません。(d1,d2,...,d100)∈N^100 であれば十分です。
>そして、>>504で主張していることは、可算無限長の数列の決定番号は発散しているので
いいえ、任意の実数列の決定番号はその定義から自明に自然数です。
>その突っ込みでは、”私の主張はゆるがない”ですよ
あなたの主張とは何ですか?
517(2): 2023/07/17(月)23:36 ID:5uwGGghW(12/12) AAS
>>513
>1)>>504で主張していることは
>「時枝記事の決定番号を使う論法が虚構である」という主張です
あなたがそう主張したいのは分かりました。
しかし主張の根拠がありません。根拠無き主張こそ虚構ですね。
>つまり、この議論だけでは不十分なれど
不十分ではなくナンセンスです。
>箱入り無数目における「しっぽの同値類」は
>有限m列の場合のm→∞とした極限ではない
で終了です。
>人々に「時枝氏の論法が十分な根拠を有しないのでは?」という疑念を引き起こすことなのです
無用です。
>君は勘違いしているが、時枝の「箱入り無数目」は、数学としては大きな欠陥があるのです(測度の指定や高確率w)
と言ったあなた自身が欠陥を具体的に示すべきです。
示せないならなぜ欠陥があると言ったのですか?
>時枝氏の論法も、いい加減だから、多くの人は>>504の議論で分かるだろうと思う
時枝先生の論法のどこがどういい加減なのか詳しくお願いします。
>2)なお、m→∞で、有限の決定番号dの存在確率が0は、次のようにして厳密に証明できるよ
> 箱が可算無限個の数列が二つ
> s =(s1,s2,s3 ,・・,sd,・・),
> s'=(s'1, s'2, s'3,・・,s'd,・・)∈R^N 2chスレ:math
> で、決定番号がd、つまりd番目以降が一致しているとする
> いま、箱に確率p(0<p<1)の数が入っているとする(サイコロの目ならp=1/6だ)
> d番目以降の無限個の数が一致する確率は、p^∞=0 となる(∵0<p<1) QED
条件 s〜s'が抜けてますよ?
s〜s'⇔∃m∈N(n≧m ⇒ sn=s'n) なのでその確率計算は間違いであり証明になってません。
任意の実数列の決定番号はその定義から自明に自然数です。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.042s