[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
525
(1): 2023/07/19(水)12:24 ID:4yn9tDSJ(1/19) AAS
>>523
>1)下記の519と522で、「それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど」
100個中99個であること、ランダム選択であることから99/100

> 「二列で考えると、P(h(Y)>h(Z))=1/2であれば嬉しい.hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明」
確率論の専門家が P(h(Y)>h(Z))=1/2 を前提にしていると勘違いしているだけ。時枝先生は P(h(Y)>h(Z))=1/2 を前提にしていない。
hが可測でないなら P(h(Y)>h(Z))=1/2 は言えない。
しかーし、Y,Zのいずれかをランダムに選択した方をa、他方をbと置けば、「ランダム」の定義から P(h(a)>h(b))=1/2 が言える。
時枝先生は P(h(Y)>h(Z))=1/2 ではなく P(h(a)>h(b))=1/2 だとおっしゃっている。これは正しい。

> ここを補足すると、>>451に書いたように、数列が有限長ならば、同値類は最後の箱nのみで殆ど決定されてしまうので、時枝氏の論法は使えない
> では、数列が無限長ならば? その証明が無いという指摘だ(なお、有限長数列同様に、ダメ(証明できない)だろう(下記2)))
有限列で成立する命題が無限列でも成立することの証明が無い。(実際「最後の項が存在する」は有限列では真だが無限列では偽)

>2)次に下記の528と523で、「hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう」
上と同じで時枝先生はそもそも P(d_X≧d_Y)≧1/2 と言ってない。確率論の専門家が勘違いしてるだけ。
526
(5): 2023/07/19(水)12:36 ID:4yn9tDSJ(2/19) AAS
サルにも分かるように言おうか?
確率論の専門家「時枝は Q⇒箱入り無数目成立 と言ってるが、Qの証明が無い。」
時枝先生「Q⇒箱入り無数目成立 と言ってない。箱入り無数目の前提条件にQは不要。」

分かりますか?分かりませんか?
534
(2): 2023/07/19(水)17:30 ID:4yn9tDSJ(3/19) AAS
>>532
>あなたは、時枝「箱入り無数目」は
>無条件で成立すると主張するのですか?
日本語わかりませんか?
私は箱入り無数目は P(h(Y)>h(Z))=1/2 なる条件無しに成立すると言ってます。
536
(1): 2023/07/19(水)17:37 ID:4yn9tDSJ(4/19) AAS
>>534
>直感的に1/2とするのは微妙
時枝先生はランダム(一様分布)の定義に基づいて1/2としている。
直感的に?どこかのサルじゃあるまいし。
538
(1): 2023/07/19(水)17:41 ID:4yn9tDSJ(5/19) AAS
>>529
>(なお、「固定」については、>>500で決着させた)
意味不明。
固定の何をどう決着させたと?
539
(1): 2023/07/19(水)17:44 ID:4yn9tDSJ(6/19) AAS
>>529
過去に誰それがどうこう言ったなんて情報はどうでもいい

今すぐ
>君は勘違いしているが、時枝の「箱入り無数目」は、数学としては大きな欠陥があるのです(測度の指定や高確率w)
と言った張本人であるあなたがどこにどんな欠陥があるのか示しなさい
542: 2023/07/19(水)17:50 ID:4yn9tDSJ(7/19) AAS
>>532
>1)「箱入り無数目」が、既存の確率過程論 ランダムウォーク理論
> 例えば、下記 重川 P45と バッティングするという認識はありますか?
無いです。

> つまり、重川 P45にあるように、連続時間をパラメータとした確率変数の族 (Xt)で
> ある区間[t',t'']の中に 可算無限個の t'<t1<t2<・・<t''が取れて
> 時枝「箱入り無数目」が正しければ、t1<t2<・・たちに対応するXtの値から、あるti (i∈N)が存在して
> Xtiの値が、確率99/100で的中できることになる
> これはヘンです
まったくヘンじゃないです。
箱入り無数目は確率変数の族 (Xt)とは何の関係も無いので。
543: 2023/07/19(水)18:05 ID:4yn9tDSJ(8/19) AAS
>>532
>上記同様、t1<t2<・・たちに対応するf(t)の値から、あるti (i∈N)が存在して
ある特定のtiではなく、時枝戦略の手順で特定される100個のtiのいずれかをランダムに選択したtiね。
ランダム選択という条件が必要。

> f(ti)の値が、確率99/100で的中できることになる
> fが正則ならばともかく、不連続な関数ですから
> これはヘンです
まったくヘンじゃないけど?
544
(1): 2023/07/19(水)18:08 ID:4yn9tDSJ(9/19) AAS
>>532
要するに箱入り無数目の出題者がi番目の箱にf(ti)の値を入れた場合ってことでしょ?
確率99/100で的中できるじゃん
証明が箱入り無数目記事に書いてあるじゃん
読めないの?
545
(1): 2023/07/19(水)18:11 ID:4yn9tDSJ(10/19) AAS
>>541
>その前に、>>535(含む>>537)を認めて下さい
間違ってるので却下します
546: 2023/07/19(水)18:16 ID:4yn9tDSJ(11/19) AAS
繰り返す

今すぐ
>君は勘違いしているが、時枝の「箱入り無数目」は、数学としては大きな欠陥があるのです(測度の指定や高確率w)
と言った張本人であるあなたがどこにどんな欠陥があるのか示しなさい
548: 2023/07/19(水)18:47 ID:4yn9tDSJ(12/19) AAS
>>547
542 543 544
550
(3): 2023/07/19(水)20:58 ID:4yn9tDSJ(13/19) AAS
>>549
>それでは、なぜ可算無限個なら、確率99/100で的中できる? そこに数理的な理屈が皆無だし、疑義があるのです
数理的な理屈は箱入り無数目記事に書いてあります
疑義があるなら具体的に指摘して下さい

>これ正しいなら、関数論のテキストを書き直さないとねw
不要です
関数論のテキストには「箱入り無数目は不成立」なんて書かれてませんので
552
(2): 2023/07/19(水)21:52 ID:4yn9tDSJ(14/19) AAS
>>551
>確率測度を用いない理屈らしいですね
自明なので書かれてないだけですが、確率を扱っている以上もちろん確率測度を用います。
箱入り無数目の確率空間は (Ω={1,2,...,100}, F=2^Ω, P(f∈F)=|f|/|Ω|) です。|x|はxの濃度です。
554
(3): 2023/07/19(水)21:59 ID:4yn9tDSJ(15/19) AAS
>>551
箱入り無数目において、
標本空間が有限集合であることは読み取れましたか?
確率分布が離散一様分布であることは読み取れましたか?
それらが読み取れた上で、確率測度が書かれていないというだけの理由で
>確率測度を用いない理屈らしいですね
なるコメントをしましたか?
いかがですか?
555: 2023/07/19(水)22:03 ID:4yn9tDSJ(16/19) AAS
>>553
>ここで、”確率測度”をしっかり議論すれば
>”ハマリ”が分かるということかな?w
では”ハマリ”が分かるように”確率測度”をしっかり議論して下さい
557
(1): 2023/07/19(水)23:15 ID:4yn9tDSJ(17/19) AAS
>>556
>ところが時枝理論が正しいと、ある数yが可算無限個の数y1,y2,・・などと関連がついて、確率1/2なり99/100なりで的中できる
>こんな理屈、集合論にも関数論にも記載なし!w
当たり前です
「こんな理屈」=箱入り無数目 であり、集合論なり関数論なりの定理ならば、数学セミナーに載りませんよ?
560: 2023/07/19(水)23:33 ID:4yn9tDSJ(18/19) AAS
>>558
論じてる確率空間が違います
話になりません
561
(3): 2023/07/19(水)23:35 ID:4yn9tDSJ(19/19) AAS
>>559
>デタラメ記事「箱入り無数目」
どこがどうデタラメなのか詳しくお願いします
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.035s