[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
254
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/03(金)10:32 ID:ivt0JCXh(4/8) AAS
>>252 補足

1.コーシー列による完備化では、極限の概念が不可欠
2.無限数列 (xn) について、有理数よりなる数列 (n有限では) xn∈Qで
 その極限で lim n→∞ xn =r not∈Q なる無限数列 (xn) が定義できる
 (それが出来なければ、実数Rは構成できない)
3.要するに、一般的に言って、極限は、もとの有限の場合の集合の外に出る場合があるってこと
 有理数よりなるコーシー列 (xn) の極限は、Q内の場合もあれば、Q外の場合もあるってこと

4.似た例が、時枝記事の議論の時に
 ”帰納法の反例”だとしてw、
 ”開集合Onの積集合 ∩On が、一点に収束するときに、一点だから閉集合になる
 だから、「帰納法の反例だ」”という主張があった
 おれは、「それって、(帰納法の反例でなく)極限でしょ」と言ってやったんだ

5.要するに、極限 lim n→∞ xn には、xnをその属する集合の外に出す力があるという理解が正しいのだ
 Zermelo構成のシングルトンによる後者関数についても同じ
 おサルが、有限の場合に外側に{}があるの無いのとか、一番右の}は何だとか、右から二番目の}があるの無いの
 そういう有限シングルトンとの対比でもって、シングルトンの極限の存在を否定することはできません
6.これ、数学の基本の ”き”
256
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/03(金)10:52 ID:ivt0JCXh(6/8) AAS
>>255
補足

あと、>>254に書いたように
”極限 lim n→∞ xn には、xnをその属する集合の外に出す力があるという理解が正しい”のです

で、極限 lim n→∞ xnが、その属する集合の外に出たことをもって
「正則性公理に反する」などと、噴飯ものの議論でしかないのです
263: 2020/01/03(金)11:54 ID:glmNLmg1(5/11) AAS
>>254
>有理数よりなるコーシー列 (xn) の極限は、
>Q内の場合もあれば、Q外の場合もあるってこと

Qは局所コンパクトじゃないから当然
しかし今の議論には全然関係ない

>有限の場合に外側に{}があるの無いのとか、

有限なら最外側の{}は存在します
外側にどんどん{}をつけていく場合
◆e.a0E5TtKEのいうナイーブな「極限」では
最外側の{}が存在せず、したがって
集合になりえない、といっているのです

>一番右の}は何だとか、右から二番目の}があるの無いの

Neumann構成で小さい順から右に要素を並べていく場合
ωではもっとも右の要素は存在しません
なぜなら最大の自然数が存在しないからです
いかなる自然数nもその後続であるn∪{n}が存在しますから

つまり>>176のアルゴリズムは失敗するわけです
残念でした

>そういう有限シングルトンとの対比でもって、
>シングルトンの極限の存在を否定することはできません

できます

端的にいえば
「0以外の自然数nは全て前者を持つ後続順序数だが
 ωは極限順序数であり前者となる順序数を持たない」
という性質から、
「極限ωがシングルトンである」
という主張を完璧に否定できます
なぜならシングルトンだといった瞬間に
ωには前者が存在してしまい、
ωが極限順序数だという性質と矛盾するからです

これが数学の初歩の「しょ」(^^)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.032s