[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
355(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)07:46 ID:exryDrPV(7/20) AAS
>>351
>箱の中身は定数だからw
>「自然に決まる」というのは数学を知らない素人の誤解ね
それ(箱の中身は定数)って、箱が有限個のときに、確率計算できなくなるぜw(下記)
確率計算するなら、「自然に決まる」について、確率空間の定義に直さないとねw(^^
あなた、現代数学の確率論、ぜんぜん分ってないね(^^
やっぱさ、箱は確率変数で分布を考えるべし
これが、現代数学の確率論の常道でしょ(^^
下記のどれか(服部、逆瀬川、重川)、最低1つを読んでみな
(参考)
(>>304より再録)
別にいいけどなw
しかし、”定数”とか言いきったら
箱が有限のときに、確率計算どうするんだ?(^^
(>>311-312より再録)
・サイコロ2つで、2つの目の和のとき
・サイコロ3つで、3つの目の和のとき
少なくとも、この2つくらいは説明してくれよ
でな、
「箱の中のサイコロの目の分布なんか
考える必要ないんだって」
あんたが言ったこと忘れずにね!(^^
外部リンク[htm]:web.econ.keio.ac.jp
確率論 服部哲弥 慶応
外部リンク[pdf]:web.econ.keio.ac.jp
確率論講義録 (約750KB pdf file・Last update 2011/09/09)
確率論(数学3年後期選択) probab.tex 服部哲弥
スレ74 2chスレ:math
外部リンク[pdf]:www.f.waseda.jp
「確率過程とその応用」 逆瀬川浩孝
スレ74 2chスレ:math
外部リンク[pdf]:www.math.kyoto-u.ac.jp
2013年度前期 確率論基礎 講義ノート 重川一郎 京都大学大学院理学研究科数学教室
外部リンク:ja.wikipedia.org
独立同分布(IID)
357(1): 2019/08/30(金)08:17 ID:x/NZZCD7(1/3) AAS
>>355
> 箱は確率変数で分布を考えるべし
サイコロの出目で無限数列Anを作ったとする
数当てには改めてAnと等しい無限数列Bnを作成して出題する
AnとBnが等しければ数当ての結果は変わらない
(数当てでは同じ代表元を使って数列の分け方と選ぶ列も同じとする)
AnとBnの項が全て同じであることをそれぞれの確率変数と分布
で表してみてください
368(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)15:52 ID:yTBVukD3(10/11) AAS
>>355
>それ(箱の中身は定数)って、箱が有限個のときに、確率計算できなくなるぜw(下記)
おサルの確率論
確率変数がないんだってさw(^^
笑えるわ、高校以下確定だな、アホやなw
外部リンク:mathtrain.jp
高校数学の美しい物語
最終更新:2015/11/06
確率密度関数の意味と具体例
連続型確率変数および確率密度関数の話です。多くの人は高校では習いませんが,数B(旧課程では数C)の教科書に載っています。理系なら知っておきたい話題。
連続型確率変数
通常,高校で扱う確率変数はとびとびの値しか取りません。例えば,サイコロの出る目を X とすると,X がとりうる値は 1 から 6 までの 6 通りです。このような確率変数を離散型確率変数と言います。
しかし,確率変数のとりうる値が連続的なものも考えないといろいろ不便です、例えば,0 以上 1 以下の乱数を一様ランダムに出力するような装置を考えると,その出力 X がとりうる値は連続的に分布します。
例えば,サイコロの例だと P(X=1)=16 などと書くことで確率分布を表すことができます。しかし,連続型確率変数に対しては離散型のときと異なり「 X=a となる確率」には(多くの場合)意味がありません。
なぜなら,連続分布の場合,特定の値にピッタリ一致する確率は 0 だからです。例えば,上の乱数の例で x=0.1 が出力される確率は 0 です。本当にランダムなら 0.1 からほんの少しはズレるはずです。
確率密度関数の定義と意味
連続分布の場合,特定の値を取る確率に意味がなくても幅を持たせて「 a?X?b となる確率」を考えればこの問題は解消されます。例えば一様乱数の例では「 0.1 となる確率は 0 だ」と言っても意味がありませんが,「 0.09?X?0.11 となる確率は 0.02 だ」と言えば確率分布の性質を反映させられます。
そこで,連続型確率変数の分布を表すために確率密度関数というものが使われます。
369(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)16:30 ID:yTBVukD3(11/11) AAS
>>355 追加
(引用開始)
>>351
>箱の中身は定数だからw
>「自然に決まる」というのは数学を知らない素人の誤解ね
それ(箱の中身は定数)って、箱が有限個のときに、確率計算できなくなるぜw(下記)
確率計算するなら、「自然に決まる」について、確率空間の定義に直さないとねw(^^
(引用終り)
詰んだな
確率変数が有限なら
下記みたいな、大学入試(高校)レベルで、そのような確率変数について説明しているサイトや資料は、山ほどあるぜ
それを、将棋の手駒のように、ぺたぺた順に貼っていけば、頭金で、おサルは詰むw
「箱の中身は定数だからw」と言い切ったおサルさん、頓死だなw(^^
有限個の場合は、箱は定数ではなく、確率変数であることを認めざるを得ない
とすれば、箱が可算無限個に増えたとしても、箱が確率変数であることを認めざるを得ない
”箱が可算無限個に増えたとしても、箱が確率変数であること”は、時枝記事にも書いてある
アホやね、笑えるわ(^^;
(参考)
(>>368より)
外部リンク:mathtrain.jp
高校数学の美しい物語
最終更新:2015/11/06
確率密度関数の意味と具体例
374: 2019/08/30(金)20:21 ID:EvACihHh(13/21) AAS
>>355
>それ(箱の中身は定数)って、箱が有限個のときに、確率計算できなくなるぜw
ニワトリ君、>>309読もうな
>・サイコロ2つで、2つの目の和のとき
>・サイコロ3つで、3つの目の和のとき
>少なくとも、この2つくらいは説明してくれよ
ニワトリ君、>>337読もうな
計算式は>>338に示した通り
P(A∩B)=P(A)P(B)
これ高校の確率で習うことだから
じゃあねwww
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.060s