[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
700
(8): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/04(水)11:15 ID:C6KNw7bs(1/3) AAS
>>699
>> 出た目の数をX とすると
>だからスレ主が言っている「確率変数」って単に箱の中の値を知らないって
>ことなんだよね?その値を確率的に当てると

いいえ、残念ながら違いますよ
「確率変数」を、くるくる回り続けるサイコロだとか、
「確率変数」ではなく、定数(>>689)だとか
あなたがたは、勝手に言ってますが
”スタンダードな定義”を理解しましょう

それには下記”大数の法則の具体例”が分かり易いです
サイコロでの、確率変数
X1,X2,・・・ たち
例えば
2,5,3,・・・のように
具体的なサイコロの目
それらの平均
(X1+X2+・・・+Xn)/n が大数の法則に従うということ
この例で、「確率変数」がどういうものか理解できるでしょう

(参考)
外部リンク:mathtrain.jp
大数の法則の具体例と証明 高校数学の美しい物語 2019/07/14
(抜粋)
大数の法則のサイコロでの例
サイコロ投げの例で大数の法則について考えてみます。
サイコロを1回ふると,出る目の平均は (1+2+3+4+5+6)/6=3.5 です。
ただし,1が出るかもしれませんし,6が出るかもしれません。

しかし,試行回数を増やしていくと,出た目の平均はどんどん 3.5 に近づきます。
つまり,サイコロを10000回くらい振ってみると
(きちんとしたサイコロなら)
サンプル平均(出た目の平均)が 3.5 にかなり近くなってきます。

もう少しきちんと述べると,以下のようになります。
それぞれの目が出る確率が 1/6 であるようなサイコロを考える。
i 回目に出た目を Xi(確率変数)とおくと,X1,X2,・・・ たちはそれぞれ独立に同一の分布(平均は μ=3.5)に従う。
このとき,n 回目までに出た目の算術平均 (X1+X2+・・・+Xn)/n は μ にどんどん近づいていく(偏る確率は0に収束する)。
701
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/04(水)11:40 ID:C6KNw7bs(2/3) AAS
>>699
>時枝戦略では列を選ぶ行為だけが確率的試行である

残念ながら、そこも違いますね
下記、時枝記事で、下記の「まったく自由」を制限して
各箱には、必ず一定の確率的手法、例えばコイントス、サイコロ2個の目の和、トランプの1種類13枚からランダムに選んだ札の数・・などなどで、箱に数を入れるとします
(”制限時枝問題∈時枝問題” であることを念押ししておきます)
なお、これは<i.i.d. 独立同分布>(>>614ご参照)です

それで、任意のi番目の箱は、確率変数Xiとして扱えます(>>700ご参照)
”コイントス、サイコロ2個の目の和、トランプの1種類13枚からランダムに選んだ札の数・・などなど”
それらの確率現象に応じた確率的な取り扱いができます

これで、各箱の数当ては、確率的試行であります
さて
1枚のコイントス{0,1}と分かっていれば、的中確率1/2
1個のサイコロ{0,1・・・,6}と分かっていれば、的中確率1/6
もし、実数を区間[0,1]から一様にランダムに選ぶと教えられたなら、的中確率0
(この場合は、”区間[0.45,0.55]の範囲”などと、予測に範囲を持たさないと、的中できません)
となります

(参考)
スレ47 2chスレ:math
時枝問題(数学セミナー201511月号の記事)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.」
702
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/04(水)11:45 ID:C6KNw7bs(3/3) AAS
>>701 補足

1つのサイコロを順に、無限回振るのはだめと言われるならば
可算無限個のサイコロを用意し、サイコロを振る無限の人を用意しておけば、箱にサイコロの目を入れ終えることは可能ですよ

そして、箱の数を、現代数学では確率変数と考えることができることは、>>700に示しました
時枝さんも記事の後半に書かれている通りです(下記)
(参考)
スレ47 2chスレ:math
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
(引用終り)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.045s