[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
43: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/12/28(木)23:46 ID:IsA0R4yK(8/8) AAS
>>42 つづき
(参考)
外部リンク:en.wikipedia.org
Meagre set
Examples
Subsets of the reals
The rational numbers are meagre as a subset of the reals and as a space ? that is, they do not form a Baire space.
The Cantor set is meagre as a subset of the reals, but not as a space, since it is a complete metric space and is thus a Baire space, by the Baire category theorem.
外部リンク:ja.wikipedia.org
疎集合
数学の分野における、位相空間内の疎集合(そしゅうごう、英語: nowhere dense set)[* 1]とは、閉包の内部が空であるような集合のことである。
この言葉の順番が大事で、例えば、R の部分集合としての、有理数からなる集合は、その「内部の閉包が空である」という性質を持つが、疎集合ではなく、実際 R において稠密である。
注釈
1^ a b 「疎集合」という名称を meagre set のために用い、nowhere dense には「至る所疎」や「至る所非稠密」などの訳語を充てる流儀もある。
外部リンク[pdf]:math.cs.kitami-it.ac.jp
例えば 渕野昌 (2002) (PDF), 実数の集合論の基礎の基礎
以上
上下前次1-新書関写板覧索設栞歴
あと 615 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.011s