[過去ログ] 不等式への招待 第4章 (706レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
503(1): 2009/09/30(水)13:39 AAS
>F,Gを[0,1]→[0,1]を満たす実連続関数であるとし、Fを単調増加関数であるとする。
>∫[0,1] F(G(x))dx ≦ ∫[0,1] F(x) dx + ∫[0,1] G(x) dxを示せ
0≦x≦1とする。t∈[x,1]のときF(x)≦F(t)だから、両辺をxから1までtで積分して
(1−x)F(x)≦∫[x,1]F(t)dt
が成り立つ。変形してF(x)≦xF(x)+∫[x,1]F(t)dt となる。F≧0だから
∫[x,1]F(t)dt≦∫[0,1]F(t)dtであり、また、x≧0,F(x)≦1よりxF(x)≦x
である。これらを用いて
F(x)≦x+∫[0,1]F(t)dt
を得る。これは任意のx∈[0,1]で成り立つから、(Gの値域)⊂[0,1]であることから
x=G(y),y∈[0,1] と置いても上の不等式は成り立つ。つまり
F(G(y))≦G(y)+∫[0,1]F(t)dt
が任意のy∈[0,1]で成り立つ。この不等式をyで0から1まで積分すればよい。
上下前次1-新書関写板覧索設栞歴
あと 203 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.007s