[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
465
(1): 01/20(月)06:59 ID:lMN8bpqd(1/12) AAS
>>464
> おサルか
 サルは大学1年の4月で数学落ちこぼれた阪大工学部卒の凡人君だろ
> 自分が書いた証明を、他人になりすまして評論か? ばれて居るぞ!
 誰でも彼でも皆同一人物と思い込むのは妄想性人格障害
> それでは、海賊版のThomas Jechの 証明を 転記しておくから 頑張れぇ〜!
 頑張るのは阪大工学部卒の君だよ、キミ
 この文章読める?
”we can do by induction, using a choice function f for the family S of all nonempty subsets of A.”
ああ、ごめんごめん。きみ、英語全く読めないニホンザルだったな。翻訳しとくわ。
省6
466
(1): 01/20(月)07:09 ID:lMN8bpqd(2/12) AAS
阪大工学部君 集合論でも初歩からつまづきまくり

1.対角線論法でRを可算列として整列させるのに可算選択公理が必要とかぬかす
  (背理法の仮定を定理として証明しようとする●●)
2.可算集合Aを整列させるのにJechの明解な証明でも可算選択公理で十分とかぬかす
  (あらかじめすべての空でない集合に対して選択関数が定義されてる必要性がわからん●●)

もうツーアウトだぞ あと一つでチェンジな

あと一つ!あと一つ!!
468: 01/20(月)07:39 ID:lMN8bpqd(3/12) AAS
やあ (´・ω・`)
ようこそ、ZFCハウスへ。
このネタはサービスだから、まず読んで落ち着いて欲しい。

うん、「また」なんだ。済まない。
仏の顔も三度って言うしね、謝って許してもらおうとも思っていない。

でも、このネタを見たとき、君は、きっと言葉では言い表せない
「ときめき」みたいなものを感じてくれたと思う。

殺伐とした数学界で、そういう気持ちを忘れないで欲しい
そう思って、このネタを書いたんだ。

じゃあ、注文を聞こうか。
469: 01/20(月)07:46 ID:lMN8bpqd(4/12) AAS
他のネタ
・実数の公理から実数のコーシー列が必ず実数に収束することを示す定理を導く証明
・線型空間が有限n次元ならn次元の数ベクトル空間と同型になることを示す定理の証明
等々

工学部あたりではこういうことはすっ飛ばして
「実数のコーシー列は必ず実数に収束する これ公理な」
「n次元の線型空間とはn次元の数ベクトル空間のこと これ定義な」
と教えるらしいが、理論に全く興味ない一般人相手では仕方ない
470: 01/20(月)07:56 ID:lMN8bpqd(5/12) AAS
工学部では
「実数とは有理コーシー列にある同値関係を入れた場合の同値類である」
とかいっても”?”という顔をされるので
「実数とは無限小数のこと ただし1=0.999…とする」
と教える

無限小数&1=0.999…、が上記の定義を満たすことは
工学部の連中にとっては一生無関係のどうでもいいクソ知識だそうだ
472
(1): 01/20(月)09:26 ID:lMN8bpqd(6/12) AAS
>>471
別に一回理解すればいつまでも記憶する必要ない
でも一回も理解してないと・・・
476: 01/20(月)16:14 ID:lMN8bpqd(7/12) AAS
>>473
> もう一度 君の証明と対比するよ
 私の証明ではないよ
 >>301書いたのは実は私 理解できなかったので尋ねた
 
 わからんことも認めずコピペで誤魔化すサルよりは
 私はマシよ 人として

> Thomas Jechの 証明は、プロ!
 数学者にプロとかいうと、馬鹿にしてんのか!って頭はたかれるよ
 君、そういうとこ傲慢というか不遜というかエテ公だよね
477
(1): 01/20(月)16:19 ID:lMN8bpqd(8/12) AAS
>>474
なんか阪大工学部卒の数学凡人が偉そうな口叩いてるけど何も理解してないんだろ?
>もう一つが、ツォルンの補題を使うスジです
 君、ツォルンの補題って言葉しか知らんのだろ
 ステートメントは・・・略す(大爆笑)
 それじゃ数学は一生分からんわ!

>Jech ”That we can do by induction, using a choice function f for the family S of all nonempty subsets of A.”は
>下記のen.wikipedia の Well-ordering theoremの証明では、省かれているよ
 省けると思ってる? どうやって?
 論理が分からんサルは「ウィキにそう書いてあるから正しい」とかいうのかい?
省2
478
(2): 01/20(月)16:22 ID:lMN8bpqd(9/12) AAS
>>475
ていうか、英語版wikiにもちゃんと書いてあるじゃん!
阪大工学部は英語0点でも入れるらしい

Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A.
整序しようとする集合をAとし、fをAの空でない部分集合の族に対する選択関数とする。
479: 01/20(月)16:30 ID:lMN8bpqd(10/12) AAS
>>478に対する阪大工学部卒の凡人の返し(予想)
「a choice function for the family of non-empty subsets of A. であって
 a choice function f for the family S of ”all” nonempty subsets of A. ではない!」

こういう●●なことを平気でいうのが、まさに考えないサル

ふっふっふっふ ほっほっほっほ
483: 01/20(月)17:34 ID:lMN8bpqd(11/12) AAS
>>480
>選択公理の変種のパワーは、形成できる列の長さで測れる。
 完全な素人の連想ゲーム しかも、読みが大外れ
484
(2): 01/20(月)17:41 ID:lMN8bpqd(12/12) AAS
>>482
> aα= f(A∖{aξ∣ξ<α})
> 選択関数f
> 集合族 A∖{aξ∣ξ<α} (添え字 α)
> 選択された要素 aα (添え字 α)
> 選択関数f が扱うのは上記限りです
> それ以外の集合族は、関係ないですよ
 正真正銘の馬鹿
 並べる前から集合族 A∖{aξ∣ξ<α}だけ取り出せるか?
 答えは否
省4
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s