[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
54(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/25(日)09:30 ID:4mPovfMa(1/5) AAS
>>34 追加補足
まず(参考)
外部リンク[pdf]:www-users.york.ac.uk
Symmetries of Equations: An Introduction
to Galois Theory
Brent Everitt 2007
Department of Mathematics, University of York,
P6
(1.9) If this was always the case, things would be very simple: Galois theory would just be the study
of the “shapes” formed by the roots of polynomials, and the symmetries of those shapes. It would be a
省20
55(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/25(日)09:31 ID:4mPovfMa(2/5) AAS
>>54
つづき
さて、>>34 外部リンク:mathlog.info Mathlog 子葉
β1=α0+α1η+α2η^2+α3η^3+α4η^4 |ηは1の5乗根で、ラグランジュ・ソルベントになっている
↓(η→η^3への置き換え)
β3=α0+α1η^3+α2η^6+α3η^9+α4η^12=α0+α1η^3+α2η^+α3η^4+α4η^2
ここちょうど、上記 Everittの ”α は不動でαω→αω^3→αω^4→αω^2(→元のαωに戻る巡回置換の図”に相当している
ここで、Mathlog 子葉にあるのは、η 1の5乗根のη→η^3への置き換え
なので、 Everittの図も同様に、5乗根の置き換えを図示しているってこと
Everittの図は、x^5 - 2=0 のクンマー拡大 Q(α =2^1/5,ω:1の5乗根)を表していて、
省10
56(1): 漆肆参 ◆i.6b92fBQS7D 2022/12/25(日)09:48 ID:bxcZkaLZ(3/8) AAS
おサルの1クン やっと、(Z/5Z)× が何なのか学び始めたね
>>54
>(図があるが略(というかここには示せない))
>(言葉で書くと、
> 複素平面上の半径r=α =2^1/5上に頂点を持つ正5角形で、
> 頂点の一つが実数α =2^1/5で、
> そこから反時計回りに、αω,αω^2,αω^3,αω^4 と頂点が配置された図)
Z/5Zは α→αω→αω^2→αω^3→αω^4 と置換する
しかし
>(言葉で書くと、α は不動でαω→αω^3→αω^4→αω^2(→元のαωに戻る巡回置換の図))
省9
57(1): 漆肆参 ◆i.6b92fBQS7D 2022/12/25(日)09:58 ID:bxcZkaLZ(4/8) AAS
>>55
>Everittの図も同様に、5乗根の置き換えを図示しているってこと
>Everittの図は、x^5 - 2=0 のクンマー拡大 Q(α =2^1/5,ω:1の5乗根)を表していて、
>そのうちのω=1の5乗根 による拡大(置換)を扱っている(説明している)図ってことだね!
位数4(5ではない!)の群(Z/5Z)×
(つまりω→ω^3→ω^4→ω^2→ω)
による拡大は、クンマー拡大じゃなくて円分拡大
クンマー拡大は位数5の群(Z/5Z)による拡大な
(α→αω→αω^2→αω^3→αω^4→α)
58(1): 漆肆参 ◆i.6b92fBQS7D 2022/12/25(日)10:11 ID:bxcZkaLZ(5/8) AAS
>>55
つまり
外部リンク:mathlog.info
のβ1~β4は、円分拡大に対応する
じゃ、クンマー拡大は?
それは
α0+α1η+α2η^2+α3η^3+α4η^4 を
α1+α2η+α3η^2+α4η^3+α0η^4 に
置き換えること(およびその繰り返し)に対応する
α1+α2η+α3η^2+α4η^3+α0η^4
省9
59(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/25(日)10:15 ID:4mPovfMa(3/5) AAS
>>50
>実はα0~α4のどれでもいい
>どれか1つから、他の4つは巡回関数σで生み出せる
>σは、cosの二倍角公式だから有理関数(しかも多項式)だ
>β1~β4は、例えばα0と巡回関数σと1の5乗根ζ5から生成できる
>これが「共通因子」だなw
>定理6.5の証明の
>「ラグランジュの分解式」
>が分かっていれば即答できたな
1)大体は、それで良いが
省32
60: 漆肆参 ◆i.6b92fBQS7D 2022/12/25(日)10:21 ID:bxcZkaLZ(6/8) AAS
Q→Q(η)→Q(η,β1)
F20⊃C5⊃{e}
つまり
[Q(η,β1):Q]=20
[Q(η,β1):Q(η)]=5
[Q(η):Q]=4
61(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/25(日)10:35 ID:4mPovfMa(4/5) AAS
>>56
(引用開始)
>This is not a geometrical symmetry!
そう単純な幾何学的対称性ではない
ただ、円の五等分点と考えて、
円の長さを三倍に引き伸ばした上で
三周させる形に巻きなおすと
ω→ω^3→ω^4→ω^2→ω
の対応が得られる
(引用終り)
省13
62(1): 漆肆参 ◆i.6b92fBQS7D 2022/12/25(日)10:39 ID:bxcZkaLZ(7/8) AAS
>>59
>いま、β1とか具体的数式で与えられているから
>具体的に2項方程式 x^5-a=0のa∈K(1の原始5乗根を含む体)を与えて
>β1=aでもいいけど、それで他のβ2,β3,β4を、
>a^1/5と1の原始5乗根ηとで具体的表式で示せれば、
>これぞクンマー拡大の典型例となる
>そう思ったわけです
β1^5,β2^5,β3^5,β4^5は、全部Q(η)の元
そしてそれら4つの数は、円分拡大の巡回群で巡回する
上記を利用すれば、できるね うん
省1
63(1): 漆肆参 ◆i.6b92fBQS7D 2022/12/25(日)10:46 ID:bxcZkaLZ(8/8) AAS
>>61
>広い意味で
勝手に広げちゃダメだよ
クンマー理論
外部リンク:ja.wikipedia.org
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
クンマー拡大(Kummer extension)とは、
ある与えられた整数 n > 1 に対し次の条件を満たすような体の拡大 L/K のことを言う。
・K は、n 個の異なる1のn乗根(つまり、Xn−1 の根)を含む。
・L/K はexponent n の可換ガロア群を持つ。
省5
64(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/25(日)23:47 ID:4mPovfMa(5/5) AAS
>>62
> ま、頑張って
なんだよw
それは、おれのセリフだよww
>>63
>>広い意味で
> 勝手に広げちゃダメだよ
良いんだよ
私的な試行錯誤のときはw
自由に考えて良いんだ
省26
65(1): 現代数学の彼岸 ◆mrg.0Mu9EdE8 2022/12/26(月)07:00 ID:QjvnggET(1/5) AAS
AA省
66(1): 現代数学の彼岸 ◆mrg.0Mu9EdE8 2022/12/26(月)07:18 ID:QjvnggET(2/5) AAS
>>64
>クンマー理論・クンマー拡大のベースの体の話に戻ると
戻ってばっかりだね
>元の体は、有理数体Qであっても、べき根を取る a^1/n で、
>aの属する体はQを拡大した体になるべし
a∈Q(η)だっていってるじゃん(ηは1の5乗根)
君、物覚え悪いね
>具体例は、下記の”11乗して1になる数を求める円分多項式”にある
>(但し、C0^5 ∈ Q(√-11)→C0^5 ∈ Q(√-11,σ) σは1の5乗根 だろうね、
> C0はラグランジュ・リゾルベントを使っているから)
省20
67(1): 現代数学の彼岸 ◆mrg.0Mu9EdE8 2022/12/26(月)08:01 ID:QjvnggET(3/5) AAS
くだらん計算
B0-B1
= ξ + ξ^4 + ξ^5 + ξ^9 + ξ^3 - ξ^2 - ξ^8 - ξ^10 - ξ^7 - ξ^6
(B0-B1)^2
=(ξ + ξ^4 + ξ^ 5 + ξ^ 9 + ξ^3 - ξ^2 - ξ^8 - ξ^10 - ξ^7 - ξ^ 6)^2
= ξ^2 + ξ^5 + ξ^ 6 + ξ^10 + ξ^4 - ξ^3 - ξ^9 - 1 - ξ^8 - ξ^ 7
+ξ^5 + ξ^8 + ξ^ 9 + ξ^ 2 + ξ^7 - ξ^6 - ξ - ξ^ 3 - 1 - ξ^10
+ξ^6 + ξ^9 + ξ^10 + ξ^ 3 + ξ^8 - ξ^7 - ξ^2 - ξ^ 4 - ξ - 1
+ξ^10 + ξ^2 + ξ^ 3 + ξ^ 7 + ξ - 1 - ξ^6 - ξ^ 8 - ξ^ 5 - ξ^ 4
+ξ^4 + ξ^7 + ξ^ 8 + ξ + ξ^6 - ξ^5 - 1 - ξ^ 2 - ξ^10 - ξ^ 9
省7
68(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/26(月)08:19 ID:QokK4Ea5(1) AAS
>>67
ありがと
ついでに
そのB0とB1の組み分けの数学的意味を解説してくれるかな
>>66
> ちなみにラグランジュ・リゾルベントの式を見れば
> 「ああ、離散フーリエ変換と同じだな」と分かる
だれも言わないみたい
そういう意味では、独創(独走?w)か
個人的かつ妄想的 数学用語の使い方だな
省5
69: 現代数学の彼岸 ◆mrg.0Mu9EdE8 2022/12/26(月)08:31 ID:QjvnggET(4/5) AAS
>>68
>B0とB1の組み分けの数学的意味を解説してくれるかな
自分で気づきなよ なんのために検索してんの
>> ちなみにラグランジュ・リゾルベントの式を見れば
>> 「ああ、離散フーリエ変換と同じだな」と分かる
>だれも言わないみたい
誰も言わないとそうだといえないんだ 自分の頭で考えないの?
>場末の5chで必死に吠えるの図
それ、大学1年の数学でオチコボレた君じゃん
ご苦労様
70(1): 現代数学の彼岸 ◆mrg.0Mu9EdE8 2022/12/26(月)08:38 ID:QjvnggET(5/5) AAS
>>68
>B0とB1の組み分けの数学的意味を解説してくれるかな
まあ、おサルさんには一生見つけられないだろうから
冥途の土産に教えてあげるよ
美的数学のすすめ ガウス和
外部リンク:biteki-math.はてなブログ.com/entry/2015/03/17/013543
「へーほーじょーよ」って言葉があるだろ?
それにしても、なんだ、直接計算しなくても求まるじゃんw
71(1): 2022/12/26(月)23:37 ID:SO0v4DPk(1/2) AAS
ハーイ、1の11乗根を巾根を使って書けば、(1)^{1/11}でーす。
実に簡単に巾根を使って書けますね。
72: 2022/12/26(月)23:58 ID:SO0v4DPk(2/2) AAS
今度丸善から
抽象代数学史概講 代数方程式から近代代数学へ
著者名 三宅 克哉 訳
原書名 A History of Abstract Algebra: From Algebraic Equations to Modern Algebra
という本が出るよ。
73: 現代数学の彼岸 ◆mrg.0Mu9EdE8 2022/12/27(火)05:52 ID:+ufoBjtG(1) AAS
>>71
>1の11乗根を巾根を使って書けば、(1)^{1/11}
>実に簡単に巾根を使って書けますね。
でも、実は平方根と5乗根で書ける
1の5乗根は平方根だけで書ける
1の7乗根は平方根と立方根だけで書ける
上下前次1-新書関写板覧索設栞歴
あと 929 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s