[過去ログ] 分からない問題はここに書いてね433 [無断転載禁止]©2ch.net (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
915(1): 2017/09/11(月)08:03 ID:y+ypDVwM(1/5) AAS
>>910
しかし、
集合の要素の(最大)数
つまり「集合の要素の数」と言ったら
前者じゃないかね?
後者だったら「集合の要素の最大値」
とでも表現するところ。
ということは、
日本語能力に問題があるのは、
キミだということになるなwww
918: 2017/09/11(月)08:22 ID:y+ypDVwM(2/5) AAS
>>909
無機質に不等式で書かれると
面食らう気持ちはわかります。
でも次の思考に基づくものだと理解すれば、
自然な流れに感じられるのでは?
試行錯誤してとりあえず a 個の例を見つけた
⇔ 少なくとも a 個あることは確認した
⇔ f(M) ≥ a を示した
では f(M) = a を示すにはどうする?
f(M) > a ではないことを示せばよい
省1
924(1): 2017/09/11(月)08:57 ID:y+ypDVwM(3/5) AAS
>>919
M={1} も条件を満たす。
M の要素の最大数で問題ない。
925: 2017/09/11(月)09:00 ID:y+ypDVwM(4/5) AAS
>>922
>>915 の通り。
曲解して答案を書くのは自由www
だが、まったく評価されず零点だな。
933(1): 2017/09/11(月)11:38 ID:y+ypDVwM(5/5) AAS
オリジナルの問題を確認した。
正の整数 n に対して、
集合 {1, 2, ..., n} の部分集合 M で条件
m ∈ M ならば 2m ∉ M
をみたすものを考える。
このような集合 M に対して
M の要素の個数を g(M) とするとき、
g(M) の取りうる最大値を f(n) と表す。
次の問に答えよ。
>>909 が誤って書いたのが真実。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.964s*