[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
309
(4): 現代数学の系譜 古典ガロア理論を読む 2017/07/02(日)07:58 ID:Tk8xp2li(2/10) AAS
>>300-302
どうも。スレ主です。

ID:LpadDnPhさんと、ID:J95VrfaFさんと、同一人物でしょうかね?
同一人物として、扱わせて頂きます。もし、違っていれば、言って下さい

で、まず最初に回答>>288で、書き漏らしていることを追記しておきます。
回答>>288では、「まず、1つの数列における、しっぽの同値類と商集合、および代表元と決定番号を考えて、確率空間 (Ω,F, P) がどうなるかをかんがえた」と。これを追加しておきます。

次に、議論をすっきりさせるために、少し確認をさせて頂きたい
Q1.時枝記事の解法>>12-13「めでたく確率99/100で勝てる」は、確率論として正当化できるという立場ですか? Y or N
Q2.>>276>>287) 平場 誠示 ”測度とは何か?”の「1 点の長さは0 として, 区間[0, 1] の長さは1 」を認めますか? Y or N
Q3.>>33 Sergiu Hart氏のPDF で P2の最後 ”When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, by choosing the xi independently and uniformly on [0, 1] ”
省1
311
(2): 現代数学の系譜 古典ガロア理論を読む 2017/07/02(日)08:05 ID:Tk8xp2li(4/10) AAS
>>310 つづき

補足:
>この時点であなたはただひとつの類T=[r]に属するR^Nの元たちを標本に選びました。
>この問題設定は誰も考えたことがないと思います。あなたのオリジナルですね。

ええ、問題に則して考えると、そうなるべきと思います。というか、この時枝記事の問題は、普通の確率論のテキストにありませんから、そこはオリジナルです
そもそも、問題に則して考える以外にないでしょ? (貴方は別の設定ですか?)
問題の流れとして、商集合の構成→各代表元選定→問題の数列構成→問題の数列の属する商集合特定(しっぽの確認)→代表番号決定 ですからね
代表番号の決定は、問題の数列 vs 代表元 との比較で、しっぽの一致する位置で決まりますから。
(補足:札があって、1が1枚、2が1枚、3が1枚 計3枚なら、1の確率は1/3。1が1枚、2が2枚、3が3枚 計6枚なら、1の確率は1/6。札の重複がある場合と均一な場合とでは、確率計算が異なる)
普通ここ、重複がある場合という意識が、ないだろうと(錯覚その1)
省11
322: 2017/07/02(日)10:44 ID:oKNJu2HT(1/3) AAS
>>309
> ID:LpadDnPhさんと、ID:J95VrfaFさんと、同一人物でしょうかね?

別であり、私は前者である。

>>300にいたるまでの流れを再確認しよう。

>>187
> > > この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる
> >『よって決定番号が有限の値を取る確率は0である』
> >そう言いたいんでしょ? Yes or No?
>
> もちろん、Yesですが、力点は、”存在しうる”のところにあります。
省16
323
(1): 2017/07/02(日)10:51 ID:oKNJu2HT(2/3) AAS
時枝記事に関する私の解釈は以前にきちんと書いている。
あなたのコピペ乱舞によりずいぶん遠くへ流されてしまった。
あなたのせいでいちいち引っ張ってくるのも面倒である。

>>309-312は付け焼刃な素人発言であり返答に値しない。
『ここがわからないので教えてください』
という態度なら相手をする気にもなるが、何も分かっていないあなたに

>>310
> 諸刃の剣というやつですよ。

と挑発されてイチイチ乗っかりたくはないし、

>>311
省9
326: 2017/07/02(日)14:25 ID:36u8MnJP(3/11) AAS
>>309
>Q1.「めでたく確率99/100で勝てる」は、
>確率論として正当化できるという立場ですか?

100個の要素があるとして、任意の2個の間に必ず順序関係があり
しかも順序関係としての推移率(a<b,b<cならばa<c)が成立するものとする

その場合、上記の要素中から1つを選びそれが最大元、すなわち
他の任意の元よりも大きい元である確率は、1/100である

まったく小学生レベルの確率論である Y
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.831s*