[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
712(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/13(金)23:39 ID:YywdYBMk(4/4) AAS
>>694 >>697
>>Q(ζ55)⊂Q(ζ110)だと思ってる考え無しのバカ発見!
>>ζ110=-ζ55 なんですがww
>ζ110を1の原始110乗根とするならそれでOKだが、1は
>ζ110=cos(2π/110)+sin(2π/110)i
>だと勝手に思い込んでるに違いないから、その場合は
>ζ110=-(ζ55^28)=-(ζ110^56)=-1*ζ110
>と馬鹿丁寧に書かんと分からんだろうな
ふふっ
1)「ζ110=-ζ55」だってね
省18
715(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/14(土)06:14 ID:AEfDxZC9(1/20) AAS
>>712
>「ζ110=-ζ55」だってね
>これ間違いだと、気付きましたかね?
おやおや、1クンは、1の原始n乗根の定義、知らないんだね
1の冪根
外部リンク:ja.wikipedia.org
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
1 の n乗根の内、m (< n) 乗しても決して 1 にならず、
n乗して初めて 1 になるものは原始的 (primitive) であるという。
省24
749(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/14(土)23:21 ID:p/slNf5Z(4/7) AAS
>>712
再録
>>ζ110=-ζ55 なんですがww
>ζ110を1の原始110乗根とするならそれでOKだが、1は
>ζ110=cos(2π/110)+sin(2π/110)i
>だと勝手に思い込んでるに違いないから、その場合は
(引用終り)
1)代数方程式論で、主に二つの原始根が登場する
2)一つは、下記の”n を法とする原始根”で、”乗法に関して成す群 (Z / n Z)× が巡回群であるときの、その生成元”
こちらは、”原始根が存在するのは n が 2, 4, p^k, 2p^k (p は奇素数 kは自然数) の場合に限られる”
省13
751(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/14(土)23:32 ID:p/slNf5Z(6/7) AAS
>>712
>>ζ110=-(ζ55^28)=-(ζ110^56)=-1*ζ110
>>と馬鹿丁寧に書かんと分からんだろうな
さて、次はこれね
”ζ110=-(ζ55^28)=-(ζ110^56)=-1*ζ110”
最初と最後をつなぐと
ζ110=-1*ζ110
これで、右辺を左辺に移項して
2*ζ110=0
よって
省3
756(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/15(日)10:47 ID:fdSQKtbP(1/21) AAS
>>753
>>代数方程式論で、主に二つの原始根が登場する
>それ、乗法群(Z/nZ)× と 加法群(Z/nZ) の違い
違うよ
原始根の一つは、乗法群(Z/nZ)×関連で
石井本「ガロア理論の頂を踏む」の第1章 9,10節の「原始根」にあるけど
さらに、11節「既約剰余類群を解剖する-(Z/pZ)×の構造」につながって
11節の最後に”この定理は最後のピークの定理を証明するときに大活躍します”とある
つまり、ガロア理論の群論側で活躍するのだが、円分体でも活躍するってことだね
(石井本では、第4章 3~6節、第6章 1、6節)
省30
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.392s*