[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
749
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/14(土)23:21 ID:p/slNf5Z(4/7) AAS
>>712
再録
>>ζ110=-ζ55 なんですがww
>ζ110を1の原始110乗根とするならそれでOKだが、1は
>ζ110=cos(2π/110)+sin(2π/110)i 
>だと勝手に思い込んでるに違いないから、その場合は
(引用終り)

1)代数方程式論で、主に二つの原始根が登場する
2)一つは、下記の”n を法とする原始根”で、”乗法に関して成す群 (Z / n Z)× が巡回群であるときの、その生成元”
 こちらは、”原始根が存在するのは n が 2, 4, p^k, 2p^k (p は奇素数 kは自然数) の場合に限られる”
 (石井本「ガロア理論の頂を踏む」の第1章 9,10節の「原始根」は こちら)
3)もう一つは、先の>>745のように ”1の原始冪根”に関して、”1 の n乗根の内、m (< n) 乗しても決して 1 にならず、n乗して初めて 1 になるものは原始的 (primitive) であるという”
 こちらは、”ζn =cos 2π/n +isin 2π/n は 1 の原始n乗根の一つである”
 この場合、普通に ζn =cos 2π/n +isin 2π/n を原始n乗根として採用する
4)この二つを混同する人がいるようだね
 「ζ110=-ζ55」とは? なんだかね。 微笑ましいねwww

(参考)
外部リンク:ja.wikipedia.org
指数 (初等整数論)
定義
n を法とする原始根とは、n を法とする既約剰余類全体が乗法に関して成す群 (Z / n Z)× が巡回群であるときの、その生成元のことである。
原始根が存在するのは n が 2, 4, p^k, 2p^k (p は奇素数 kは自然数) の場合に限られる。

つづく
1-
あと 253 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.217s*