レス書き込み
スレへ戻る
写
レス栞
レス消
純粋・応用数学・数学隣接分野(含むガロア理論)20
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>766 > >>760 > >定義より帰納的集合は > >{},{{}},{{},{{}}},{{},{{}},{{},{{}}}},・・・ > >を元として含む。 > >無限集合を含むとは限らないわけですな。 > > ご苦労様です > 結論から言えば、Yesだが・・ > > 補足すると > 1)公理的集合論の立場と、日常数学(含む素朴集合論)の立場とあって > 例えばZFCの公理的集合論の立場は、無限集合は 公理として認めるべしだが > 一方、公理的集合論以前のカントールやデデキントは、無限集合を素朴に認めていたのです > (だが、ラッセルのパラドックが見つかり、素朴集合論を制限して 公理化しようとなった) > 2)少し掘り下げると、{},{{}},{{},{{}}},{{},{{}},{{},{{}}}},・・・ > の極限として 素朴に無限を考えることは 正当化できる > 例えば、下記一点コンパクト化の例 として、N に最大元 ω を付け加える > この ωが、公理的集合論におけるノイマン構成のω=Nであることは、周知のとおり > 3)ところが、問題は 公理として考えた場合、ω=N として与えなければ ならないのだが > つまり、ω=Nは極限順序数であって、ω=Nには前者が存在しない。即ち、前者に後者関数を適用してもダメなのです > 4)そこで単純には、一点コンパクト化 ω=Nの存在を公理とすることを思いつくだろう > 5)しかし、先を見ると カントールの順序数全部を公理的集合論に取り込みたいのだ > ω=Nを含む 無限集合たる カントールの順序数全体を公理として認めてしまう、この方がスッキリなのです > そうノイマンは考えた。だから、いまのような 無限公理の設定になっているのです(下記) > > だから、公理的集合論で無限公理を認めない立場では、無限集合は含まない > 公理的集合論でも無限公理を認める立場では、無限集合は含む(そして、素朴集合論はこちらです) > > (参考) > https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E5%8C%96 > コンパクト化 > 一点コンパクト化の例 > 自然数全体(離散位相) > N の一点コンパクト化は > N に最大元 ω を付け加えた順序集合 > N∪{ω} の順序位相と同相になる。 > > https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 > 無限公理 > https://en.wikipedia.org/wiki/Axiom_of_infinity > Axiom of infinity (注:こちら英文の方が 詳しいのでお勧めです)
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.011s