レス書き込み
スレへ戻る
写
レス栞
レス消
純粋・応用数学・数学隣接分野(含むガロア理論)20
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>631 > つづき > Alternative method > An alternative method is the following. Let > Φ(x) be the formula that says "x is inductive"; i.e. > Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))). > Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set W such that > ∀x(x∈W↔∀I(Φ(I)→x∈I)). (*) > For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification. > Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set > W={x∈I:∀J(Φ(J)→x∈J)} > – i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if x∈W, then > x is in every inductive set, and if > x is in every inductive set, it is in particular in I, so it must also be in W. > > For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element > x is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set > W′ that satisfied (*) we would have that > W′⊆W since > W is inductive, and > W⊆W′since > W′is inductive. Thus W=W′. > Let ω denote this unique element. > > This definition is convenient because the principle of induction immediately follows: If > I⊆ω is inductive, then also > ω⊆I, so that I=ω.■ > (引用終り) > 以上
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s