レス書き込み
スレへ戻る
写
レス栞
レス消
ガロア第一論文と乗数イデアル他関連資料スレ13
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>610 > つづき > > これまで未解決の問題は、e と π という数が代数的に独立であるかどうかという問題です。これは、リンデマン・ワイエルシュトラスの定理の現在証明されていない一般化であるシャヌエルの予想によって解決されるだろう。[41][42] > > eは正規分布していると考えられており、これはeを任意の基数で表した場合、その基数で可能な数字が均一に分布している(与えられた長さの任意のシーケンスで等しい確率で発生する)ことを意味する。[43] > > 代数幾何学において、周期とは代数領域上の代数関数の積分として表現できる数です。定数πは周期であるが、eは周期ではないと推測される。[44] > > en.wikipedia.org/wiki/Proof_that_e_is_irrational > Proof that e is irrational > The number e was introduced by Jacob Bernoulli in 1683. More than half a century later, Euler, who had been a student of Jacob's younger brother Johann, proved that e is irrational; that is, that it cannot be expressed as the quotient of two integers. > Euler's proof > Euler wrote the first proof of the fact that e is irrational in 1737 (but the text was only published seven years later).[1][2][3] He computed the representation of e as a simple continued fraction, which is > e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,・・・ ,2n,1,1,・・・ ]. > Since this continued fraction is infinite and every rational number has a terminating continued fraction, e is irrational. A short proof of the previous equality is known.[4][5] Since the simple continued fraction of e is not periodic, this also proves that e is not a root of a quadratic polynomial with rational coefficients; in particular, e2 is irrational. > > Fourier's proof > 略す > > Alternate proofs > 略す > > Generalizations > 略す > (引用終り) > 以上
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.009s