レス書き込み
スレへ戻る
写
レス栞
レス消
ガロア第一論文と乗数イデアル他関連資料スレ13
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>409 > つづき > > There exist models of ZF that violate the above conditions ([17], [18]). > Observe the fine distinction between conditions 2 and 3 of Theorem 1.1. > These may lead one to assume that also the following property is equivalent to the above conditions: > (*) a function f : R −→ R is continuous iff it is sequentially continuous. > However, this would be a serious mistake: (*) holds in ZF (without any choiceassumptions) — see [29]. > If, however, we consider functions f : X −→ R with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1. > Proposition 1.2 ([15]). Equivalent are: > 1. in R, every bounded infinite set contains a convergent injective sequence, > 2. every infinite subset of R is Dedekind-infinite. > There exist models of ZF that violate the above conditions ([18]). > Obviously, the conditions of Theorem 1.1 imply the conditions of Proposition 1.2. > Is the converse true? > Observe that the following slight modifications of condition 1 in Proposition 1.2 hold in ZF: > (a) in R, every bounded countable set contains a convergent injective sequence, > (b) in R, for every bounded infinite set there exists an accumulation point. > > <Lindelöfとは?> > en.wikipedia.org/wiki/Lindel%C3%B6f_space > Lindelöf space > In mathematics, a Lindelöf space[1][2] is a topological space in which every open cover has a countable subcover. > The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover. > > (注:上記の”(*) a function f : R −→ R is continuous iff it is sequentially continuous. (*) holds in ZF (without any choiceassumptions) — see [29]”が、下記と思う) > alg-d.com/math/ac/continuous.html > トップ > 数学 > 選択公理 > 実数関数の連続性 > 壱大整域 20130323 > 一方,次の命題はZFで証明できる. > 命題 f: R→Rとする. > fがRで連続 ⇔ 収束点列 { xn }n=0∞に対して limn→∞f(xn) = f(limn→∞xn) > 証明 略す > > ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E3%81%AE%E9%80%A3%E7%B6%9A%E6%80%A7 > 実数の連続性(continuity of real numbers)とは、実数の集合がもつ性質である。有理数はこの性質を持たない。 > 実数の連続性は、実数の完備性 (completeness of the real numbers) とも言われる > (引用終り) > 以上
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s