レス書き込み
スレへ戻る
写
レス栞
レス消
ガロア第一論文と乗数イデアル他関連資料スレ13
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>376 > >>358 戻る > (引用開始) > >なお、おサルさん>>7-10は > >存在を示す 選択公理(選択関数)のポジティブな面を見ようとせず > >ネガティブな面のみを強調するが、それ 自分の数学レベルの低さを自白しているに等しい > 好きな順番で整列できるだの、aαでfを定義するだのほざいてる人こそ自分の数学レベルの低さを自白しているに等しい > (引用終り) > > 『抽象的な選択関数を使って > 具体的な対象を構成する』 > 好きなだけ、可能な範囲でね > 2025年の人類の数学の能力で不可能な場合は、別としてね > > 具体例で論じよう > 下記 ヴィタリ集合を取り上げる > > ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 > ヴィタリ集合 > 構成と証明 > 有理数体 Q は実数体 R の普通の加法についての部分群を成す。なので加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) は有理数集合の互いに交わらない"平行移動コピー"によって出来ている。この群の任意の元はある r ∈ R についての Q + r として書ける > R/Q の元は R の分割の1ピースである。そのピースは不可算個あり、各ピースはそれぞれ R の中で稠密である。R/Q の元はどれも [0, 1] と交わっており、選択公理によって [0, 1] の部分集合で、R/Q の代表系になっているものが取れる > このようにして作られた集合がヴィタリ集合と呼ばれているものである > すなわち、ヴィタリ集合 V は [0, 1] の部分集合で、各 r ∈ R に対して v − r が有理数になるような一意的な v を要素に持つものであるヴィタリ集合 V は不可算であり、 > u,v∈V,u≠v > であれば v − u は必ず無理数である > ヴィタリ集合は非可測である > これを示すために V が可測だったとして矛盾を導く。q1, q2, ... を [−1, 1] の有理数の数え上げとする(有理数集合は可算なのでこれは可能)。V の構成から、平行移動による集合 > Vk=V+qk={v+qk:v∈V}, k = 1, 2, ... はそれぞれ互いに交わらない > さらに、 > [0,1]⫅⨄kVk⫅[−1,2] である。ここで、ルベーグ測度のσ-加法性を使うと: > 1≦?k=1∞λ(Vk)≦3. > である。ルベーグ測度は平行移動について不変なので > λ(Vk)=λ(V) である > ゆえに、 > 1≦?k=1∞λ(V)≦3. > であるが、これは不可能である > 一つの定数の無限和は 0 であるか無限大に発散するので、いずれにせよ [1, 3] の中には入らない > すなわち V は可測ではない。つまりルベーグ測度 λ はいかなる値も λ(V) の値として定義できない[3][4] > (引用終り) > > つづく
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.017s