レス書き込み
スレへ戻る
写
レス栞
レス消
ガロア第一論文と乗数イデアル他関連資料スレ11
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>771 > >>766 追加 > >K3 surface > > https://ja.wikipedia.org/wiki/K3%E6%9B%B2%E9%9D%A2 > K3曲面 > K3曲面 (英: K3 surface) とは、不正則数が 0 で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 > > エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 > > K3曲面は、複素トーラスとともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。K3曲面はラマヌジャンが1910年代に発見したが未発表に終わり[1][2]、後に Weil (1958) が再発見して、3人の代数幾何学者(クンマー、ケーラー、小平邦彦)と当時未踏峰だったK2に因みK3曲面と名付けた。 > > 定義 > K3曲面の特徴づけに使える同値な性質は多数存在する。完備で滑らかな自明な標準バンドルを持つ曲面は、K3曲面と複素トーラス(もしくはアーベル多様体)なので、そこに何かしら後者を除外する条件を付け加えればK3曲面の定義になる。複素数上で曲面が単連結であるという条件が時として使われる。 > > 性質 > 1. 全ての複素K3曲面は、互いに微分同相である(小平邦彦が最初に証明した)。 > > Siu (1983) は、全ての複素K3曲面がケーラー多様体であることを示した。このケーラー多様体であるという事実と、カラビ予想のヤウによる解の結果として、K3曲面はリッチ平坦な計量を持つ。 > > 上記のK3曲面の性質のおかげで、現在、代数幾何だけではなく、カッツ・ムーディ代数、ミラー対称性や弦理論で広く研究されている。特に、格子構造は、その上にネロン・セヴィリ群の構造をもつモジュラ性をもたらす。 > > 弦双対性との関係 > K3曲面は、弦双対性(英語版)のほとんどの箇所に現れ、重要なツールを提供する。弦のコンパクト化に対して、K3曲面は、自明な空間ではないが、詳細な性質のほぼ全部を解明できる空間である。タイプ IIA 弦、タイプ IIB 弦、E8 × E8 ヘテロ弦、Spin(32)/Z2 ヘテロ弦、および M-理論は、K3曲面上のコンパクト化により関連付けらることができる。例えば、K3曲面上へコンパクト化されたタイプ IIA 弦は、4-トーラス上へコンパクト化されたヘテロ弦に等価である。Aspinwall (1996) > > https://en.wikipedia.org/wiki/K3_surface > K3 surface > > See also > ・Mathieu moonshine, a mysterious relationship between K3 surfaces and the Mathieu group M24.
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.019s