レス書き込み
スレへ戻る
写
レス栞
レス消
ガロア第一論文と乗数イデアル他関連資料スレ2
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>856 > >>855 > >手を動かさないと解析は無理 > > ありがとう > これから、ハーン・バナッハの定理を勉強する若者のために > > >>852 > >> 零因子行列という言い方はあまり使われないのではなかろうか > > 確かに非正則行列は零因子であるし、逆も真だが > > 非正則の条件として答えることはないな > > なるほど > しかし、”零因子行列→零因子の行列”とでも言えば、良かったかも > だが、線形代数で零因子を知っていれば、”零因子行列→零因子の行列”以外に解釈のしようもないでしょう > > (参考) > https://yoshiiz.blog.fc2.com/blog-entry-147.html > よしいずの雑記帳 2010-08-05 > 体上の正方行列が零因子になる条件 > 体(例:実数体、複素数体)上の正方行列が零因子になる条件は、基本的な結果であり、それを導くのも難しくないのですが、線型代数や代数学の入門書には意外と書かれていません。 > まず、体上の正方行列は、零因子か正則行列のどちらかです。しかも、一方のみ成り立ちます。つまり、正則行列かつ零因子であるようなものは存在しません。 > > よく知られているように、正則行列であるための必要十分条件は、行列式が0でないことです。後者はさらに、0が固有値でないことと同値です。この対偶を考えれば、体上の正方行列について、以下の条件がすべて同値であることがわかります。 > ・零因子である > ・行列式が0になる > ・0が固有値の一つである > > 一般に、零因子には左零因子と右零因子があります。ところが、体上の行列においては、左零因子であることと右零因子であることは同値になります。しかも、Aが零因子のとき、あるOでない正方行列Xが存在してAX=XA=Oとなります(ヒント:行列Aの最小多項式を考える)。ただし、AX=Oを満たす全てのXが必ずしもXA=Oを満たすとは限りません。その逆も同様です。 > (引用終り) > 以上
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s