レス書き込み
スレへ戻る
写
レス栞
レス消
スレタイ 箱入り無数目を語る部屋4
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>58 > >>55 補足 > >ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 > > この部分は、原文まま(さっき原文を確認した) > 「Q/Zを「差が有理数」で類別した代表系」?? > > これって、今更だけど > 「ヴィタリ集合は、R/Q(二つの無理数の差が有理数)で類別した完全代表系で、その完全代表系を区間[0,1]内にとった集合」 > とでも書くべきでしょ?(下記ヴィタリ集合ご参照) > > 「Q/Z」は、R/Qの単純タイポと思いたいけど・・ > ”時枝さん、大丈夫? ”非可測集合”のこと、理解して書いている?” > と、つい思ってしまうなw > > (参考) > https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 > ヴィタリ集合 > 構成と証明 > 有理数体 Q は実数体 R の普通の加法についての部分群を成す。なので加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) は有理数集合の互いに交わらない"平行移動コピー"によって出来ている。この群の任意の元はある r ∈ R についての Q + r として書ける。 > > R/Q の元は R の分割の1ピースである。そのピースは不可算個あり、各ピースはそれぞれ R の中で稠密である。R/Q の元はどれも [0, 1] と交わっており、選択公理によって [0, 1] の部分集合で、R/Q の代表系になっているものが取れる。このようにして作られた集合がヴィタリ集合と呼ばれているものである。すなわち、ヴィタリ集合 V は [0, 1] の部分集合で、各 r ∈ R に対して v - r が有理数になるような一意的な v を要素に持つものである。ヴィタリ集合 V は不可算であり、 u,v∈V,u ≠ vであれば v - u は必ず無理数である。 > > ヴィタリ集合は非可測である。これを示すために V が可測だったとして矛盾を導く。
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s