レス書き込み
スレへ戻る
写
レス栞
レス消
現代数学の系譜 カントル 超限集合論
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>504 > >>491 > >基礎付け問題 > > これは、下記が、元記事だな(^^ > > https://en.wikipedia.org/wiki/Finite_set > Finite set > (抜粋) > Contents > 1 Definition and terminology > 2 Basic properties > 3 Necessary and sufficient conditions for finiteness > 4 Foundational issues > 5 Set-theoretic definitions of finiteness > 5.1 Other concepts of finiteness > > Foundational issues > Georg Cantor initiated his theory of sets in order to provide a mathematical treatment of infinite sets. Thus the distinction between the finite and the infinite lies at the core of set theory. > Certain foundationalists, the strict finitists, reject the existence of infinite sets and thus recommend a mathematics based solely on finite sets. > Mainstream mathematicians consider strict finitism too confining, but acknowledge its relative consistency: the universe of hereditarily finite sets constitutes a model of Zermelo?Fraenkel set theory with the axiom of infinity replaced by its negation. > > Even for those mathematicians who embrace infinite sets, in certain important contexts, the formal distinction between the finite and the infinite can remain a delicate matter. > The difficulty stems from Godel's incompleteness theorems. One can interpret the theory of hereditarily finite sets within Peano arithmetic (and certainly also vice versa), so the incompleteness of the theory of Peano arithmetic implies that of the theory of hereditarily finite sets. > In particular, there exists a plethora of so-called non-standard models of both theories. A seeming paradox is that there are non-standard models of the theory of hereditarily finite sets which contain infinite sets, but these infinite sets look finite from within the model. > > つづく
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s