レス書き込み
スレへ戻る
写
レス栞
レス消
現代数学の系譜 カントル 超限集合論
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>236 > >>233 補足 > > (参考) > https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E7%84%A1%E9%99%90 > デデキント無限 > (抜粋) > 数学において、集合A がデデキント無限(Dedekind-infinite)である、またはデデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。つまり、A とA の真部分集合B の間に全単射が存在するということである。集合 A がデデキント無限でないとき、デデキント有限であるいう。 > > デデキント無限は、自然数を用いないような最初の無限の定義である。選択公理を除いたツェルメロ・フレンケルの公理系は、任意のデデキント有限集合は有限個の元を持つという意味での有限である、ということを証明するだけの強さを持たない[1]。デデキント無限以外にも、選択公理を用いない有限集合や無限集合の定義が存在する。 > 目次 > 1 通常の無限集合の定義との比較 > 2 ZFにおけるデデキント無限 > 3 歴史 > 4 選択公理との関係 > 5 可算選択公理を仮定した無限との同値性の証明 > 6 一般化 > 7 引用文献 > 8 参考文献 > > 通常の無限集合の定義との比較 > デデキントの意味での“無限集合”は、普通の意味での無限集合と比較されるべきであろう: > > 集合A が無限であるとは、どのような自然数 n に対しても、{0,1,2,..., n -1}(有限順序数)と A との間に全単射が存在しないことである。 > 無限とは、全単射が存在しないという意味で文字通り有限でないという集合である。 > > 19世紀後半、多くの数学者はデデキント無限であることと通常の意味の無限は同値であると単純に考えていた。しかし実際は、選択公理(“AC”)を除いたツェルメロ・フレンケルの公理系(通常、“ZF”と表記される)からは、その同値性は証明されえない。弱いACを使うことで証明でき、フルの強さは要求されない。その同値性は、可算選択公理(“CC”)より真に弱い形で証明できる。 > > つづく
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.014s