レス書き込み
スレへ戻る
写
レス栞
レス消
現代数学の系譜 カントル 超限集合論
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>181 > >>180 > つづき > > 定義 5 (商集合).R を x 上の同値関係とする。このとき、「R による同値類がすべて属し、それ以外のモノが属さない集合」である > {y∈P(x)?∃a[a∈x∧y=[a]R]} > を商集合とよび x/R と書く。 > > 商集合は直感的な内包的記法を使えば > {[a]⊂x?a∈x} > とも書けるだろう。こう書くほうがどのような集合かわかりやすいかもしれない (分出公理によって存在が保障されることはわかりにくいが)。 > > 上で例示した ω 上の同値関係 M について考えると、その同値類は Mo と Me の2つであったので、商集合は > ω/M={Mo,Me} > となる。適当に代表元を定めて > ω/M={[0],[1]} > とも書ける。 > > http://home.p07.itscom.net/strmdrf/basic_com2.htm > 数学の基礎 > > 19.素朴集合論とZF集合論 > > さて、集合の概念で、最も便利な性質、すなわち任意に命題 P が与えられたとき、P を満たす x 全体の集合、というものを考えたいのですが、これをそのまま公理にしたのでは、Russellのパラドクスにより矛盾が生じてしまいます。 > そこで、通常の数学で、このような集合を考えたいときには、いつもどのような状況にあるかということを考えると、既に集合であることがわかっている a の元のうち、P を満たすようなもの全体からなる集合、というものを考えていることがわかります。そこで、分出公理: > > ∀a ∃b ∀x [ x∈b U ( x∈a ∧ P ) ] > を仮定しよう、という考え方があります。このような集合 b は、外延性公理により唯一つであることが証明できますから、これを { x∈a | P } と書きます。なお、ここで素直に「仮定します」と言わなかったのは、次のような、別の場面で必要となる公理があり、この分出公理はそこから導出できるからです。 > > つづく
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.011s