レス書き込み
スレへ戻る
写
レス栞
レス消
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>632 > >>631 ついで > > http://math.stackexchange.com/questions/271536/ring-of-formal-power-series-finitely-generated-as-algebra > Ring of formal power series finitely generated as algebra? asked Jan 6 '13 at 13:44 user55354 > > I'm asked if the ring of formal power series is finitely generated as a K-algebra. Intuition says no, but I don't know where to start. Any hint or suggestion? > > 2 Answers > > Let A be a non-trivial commutative ring. Then A[[x]] is not finitely generated as a A-algebra. > > Indeed, observe that A must have a maximal ideal m, so we have a field k=A/m, and if k[[x]] is not finitely-generated as a k-algebra, then A[[x]] cannot be finitely-generated as an A-algebra. So it suffices to prove that k[[x]] is not finitely generated. > Now, it is a straightforward matter to show that the polynomial ring k[x1,…,xn] has a countably infinite basis as a k-vector space, so any finitely-generated k-algebra must have an at most countable basis as a k -vector space. > > However, k[[x]] has an uncountable basis as a k-vector space. Observe that k[[x]] is obviously isomorphic to kN, the space of all N-indexed sequences of elements of k, as k-vector spaces. But it is well-known that kN is of uncountable dimension: see here, for example.
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.008s