レス書き込み
スレへ戻る
写
レス栞
レス消
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>584 > >>566 > あと、 > >さて、命題A:「Tran ∈ 超越数、 Algn ∈ 代数的数」→ 命題B:「Tran と Algnとは同じしっぽの同値類に属さない」 が言える > >∵無限少数展開のしっぽは一致しないから > > > >つまり、命題Aで、超越数や代数的数という情報を与えたから、命題Bが言えたのだ > >(ここが、ヴィタリ集合論と類似の議論(有理数、無理数という情報を与えてヴィタリ集合の存在を導く)だ) > > > >問題は、超越数や代数的数という情報が、与えられていないときに、命題Bが言えるのか? > >εはいくらでも小さく取れるから、頭からしっぽに近い部分まで、いくらでも一致させることはできる > > > >それで、命題Bが言えるには、具体的にどういう情報が必要なのだろうか? > >(そこをすっきり理論的に解明できれば、論文が一つ書けるだろう ) そこを時枝記事はスルーしているのだよ > について。標数を0として考える。10進無限小数展開された実数を任意に取り、xとする。 > 任意に、実数体Rの完全不連結な部分体K(Kは、例えば Q(e) eはネイピア数 などのような或るRの部分体の超越拡大体でもいい) > を取る。そうすると、実数xがK上代数的か超越的かどちらなのか、が分かればいい。実数xについて或る体K上代数的か超越的か > のどちらなのかが分からないなら、これが分かればいい。そのことが分かれば、あとは、複素数体C上ではKの代数的閉包Fが存在し、 > K∩F はRの部分体で体の拡大 F/K の部分体だから、x∈K∩F⊂F (xがF上代数的) か x∈R\(K∩F) のどちらなのかが分かる。だから、上の > >さて、命題A:「Tran ∈ 超越数、 Algn ∈ 代数的数」 → 命題B:「Tran と Algnとは同じしっぽの同値類に属さない」 が言える > >∵無限少数展開のしっぽは一致しないから > と同様なことがいえて、Bと同様な命題が成り立つための1つの十分条件が分かる。スレ主のいう > >問題は、超越数や代数的数という情報が、与えられていないときに、命題Bが言えるのか? > という問題は、超越数や代数的数の定義から、任意に与えられかつ10進無現表示された実数xの超越性を判定する問題に帰着される。
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.012s