レス書き込み
スレへ戻る
写
レス栞
レス消
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>470 > >>467 関連(ヒルベルト空間) > > >>466の命題Aの”しっぽの先が一致”について補足 > > 下記、超越数かどうかが未解決の例:e+π ”有理数であるのか無理数であるのか超越的であるのか否かは証明されていない”という > これを、「しっぽの先が一致する」同値類という視点から見ると > > もし、有理数なら、「しっぽの先」は循環小数(循環小数である桁の後ろが全て0の場合も含む)になって、有限小数+循環小数(循環小数である桁の後ろが全て0の場合も含む)と表される > 現代数学では、e+πがどうなっているか未解明。”循環小数(循環小数である桁の後ろが全て0の場合も含む)”になるかどうかさえ不明 > > なお、実数の少数無限展開は、コーシー列と同義で、ヒルベルト空間の中かな(下記ヒルベルト空間ご参照) > > まして、e+πが代数的数かどうかなど、夢のまた夢 > それが、現代数学の現状だろ? 「宝くじが当たって1億円」と同じ状態 > > https://ja.wikipedia.org/wiki/%E8%B6%85%E8%B6%8A%E6%95%B0 > 超越数 > (抜粋) > 超越数かどうかが未解決の例 > > e+π、e-π、・・・など > > 円周率 π や自然対数の底 e の大抵の和、積、べき乗は、有理数であるのか無理数であるのか超越的であるのか否かは証明されていない[注 4]。 > (引用終り) > > https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93 > ヒルベルト空間 > (抜粋) > 距離空間として完備であるような任意の前ヒルベルト空間は、ヒルベルト空間になる。完備性は、H 内の列に対するコーシーの判定法(英語版)の形で表すことができる。即ち、前ヒルベルト空間 H が完備となるのは、任意のコーシー列がノルムに関する意味で H 内の元に収束することである。 > (引用終り)
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.009s