レス書き込み
スレへ戻る
写
レス栞
レス消
現代数学の系譜11 ガロア理論を読む17 [転載禁止]©2ch.net
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>54 > >>53 つづき > > totally bounded >>52 > > https://en.wikipedia.org/wiki/Totally_bounded_space > Totally bounded space > > In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed "size" (where the meaning of "size" depends on the given context). > The smaller the size fixed, the more subsets may be needed, but any specific size should require only finitely many subsets. > A related notion is a totally bounded set, in which only a subset of the space needs to be covered. Every subset of a totally bounded space is a totally bounded set; but even if a space is not totally bounded, some of its subsets still will be. > > Definition for a metric space > A metric space (M,d) is totally bounded if and only if for every real number ε >0, there exists a finite collection of open balls in M of radius ε whose union contains M . > Equivalently, the metric space M is totally bounded if and only if for every ε >0, there exists a finite cover such that the radius of each element of the cover is at most ε. > This is equivalent to the existence of a finite ε-net.[1] > > 参考 日wiki > https://ja.wikipedia.org/wiki/%E5%85%A8%E6%9C%89%E7%95%8C%E7%A9%BA%E9%96%93 > 全有界空間 > > 位相幾何学および関連する数学の分野において、全有界空間(ぜんゆうかいくうかん、英: totally bounded space)とは、・・・
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s