フェルマーの最終定理の証明 (717レス)
上下前次1-新
1(4): 与作 04/22(火)18:27 ID:ZBPrKUfk(1) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、成立つので、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
591: 08/07(木)04:29 ID:jDc0ZGtb(1/9) AAS
∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α)
x:0→1 t:α→β
x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α)
∫_0^1?x^m (1-x)^n dx
=∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt
=1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)!
∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx
=-1/6 (β-α)^3
m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx
=-1/12 (β-α)^4
m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx
=(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5
592: 08/07(木)04:30 ID:jDc0ZGtb(2/9) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
593: 08/07(木)04:30 ID:jDc0ZGtb(3/9) AAS
y''+6y'+10y=2sin(x).
D^2+6D+10=0. D=-3±i
(D^2+6D+10)y=2sin(x)
(D-(-3+i))(D-(-3-i))y=i(e^(-ix)-e^ix)
y=1/(D-(-3+i))∙1/(D-(-3-i)) i(e^(-ix)-e^ix)
a=-3+i, b = -3-i, f(x)=i(e^(-ix)-e^ix)
と置くと
y=1/(D-a)∙1/(D-b) f(x)=1/(D-b)∙1/(D-a) f(x)
=1/(D-b) e^ax 1/D e^(-ax) f(x)=1/(D-b) e^ax ∫▒〖e^(-ax) f(x)〗 dx
=e^bx 1/D e^(-bx) e^ax ∫▒〖e^(-ax) f(x)〗 dx
=e^bx 1/D e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx
=e^bx ∫▒(e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx) dx
=e^(-(3+i)x) ∫▒(e^2ix ∫▒〖e^((3-i)x) i(e^(-ix)-e^ix)〗 dx) dx
=e^(-(3+i)x) ∫▒(〖ie〗^2ix ∫▒〖e^((3-2i)x)-e^3x 〗 dx) dx
=e^(-(3+i)x) i∫▒e^2ix (e^((3-2i)x)/(3-2i)-e^3x/3+A)dx
=e^(-(3+i)x) i∫▒〖e^3x/(3-2i)-e^((3+2i)x)/3+A〗 e^2ix dx
=e^(-(3+i)x) (〖ie〗^3x/(3(3-2i))-〖ie〗^((3+2i)x)/(3(3+2i))+A (i2e^2ix)/2i+B)
=e^(-ix) e^(-3x) ((ie^3x)/(3(3-2i))-(〖ie〗^2ix e^3x)/(3(3+2i))+Ae^2ix+B)
=e^(-ix) (i/(3(3-2i))-〖ie〗^2ix/(3(3+2i))+Ae^((2i-3)x)+Be^(-3x) )
=(ie^(-ix))/(3(3-2i))-(ie^ix)/(3(3+2i))+Ae^((i-3)x)+Be^(-(3+i)x)
=i (3+2i)/3∙(cosx-isinx)/13-i (3-2i)/3∙(cosx+isinx)/13+e^(-3x) (Ae^ix+Be^(-ix))
=i (4icosx-6isinx)/39+e^(-3x) (Acosx+iAsinx+Bcosx-iBsinx)
=(-4cosx+6sinx)/39+e^(-3x) ((A+B)cosx+i(A-B)sinx)
=2sinx/13-4cosx/39+e^(-3x) (C_1 cosx+C_2 sinx)
594: 08/07(木)05:29 ID:6ilCZ7Y3(1/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない というのは、オレは直感的にはわかる気がするんだわ そりゃあ、、、ないでしょ みたいな
数式ではよう表さんし、それでは証明にならんというのはわかってるんだが
そのへんみなさんはどうなんすか?
595: 08/07(木)05:40 ID:6ilCZ7Y3(2/6) AAS
2つの立方体A、Bがあり、このA、Bを足した体積を持つ立方体Cがあるとする
これらの立方体A、B、Cのいづれも、1辺の長さが自然数であることはあり得るか?
↑こう言い換えてもいいすよね?
596: 08/07(木)09:18 ID:6ilCZ7Y3(3/6) AAS
n=3のとき、X^n+Y^n=Z^nの自然数解があるなら、数に限りがあることになってしまう
数に限りはないために、n=3のとき、X^n+Y^n=Z^nは自然数解を持たない
597: 与作 08/07(木)09:28 ID:o1NnEstn(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
598: 与作 08/07(木)09:29 ID:o1NnEstn(2/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
599: 与作 08/07(木)09:31 ID:o1NnEstn(3/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
600: 08/07(木)09:31 ID:6ilCZ7Y3(4/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
これはわかる 3辺の長さがそれぞれ自然数である直角三角形は無数にあるため
601: 08/07(木)09:38 ID:6ilCZ7Y3(5/6) AAS
n=2の時、X^n+X^n=Y^nは自然数解を持たない √2は無理数であるため
602: 08/07(木)09:40 ID:6ilCZ7Y3(6/6) AAS
↑Xとは直角を挟む2辺のことでYとは斜辺のことす
603: 08/07(木)11:23 ID:jDc0ZGtb(4/9) AAS
∫_0^∞?(sin(x))/x dx
∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x)
F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0)
dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx
=∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx
=∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx
=-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx
=∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx
=[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx
=0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx
=1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx
=[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx
=-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx
=-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx)
604: 08/07(木)11:23 ID:jDc0ZGtb(5/9) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
605: 08/07(木)11:26 ID:jDc0ZGtb(6/9) AAS
AA省
606: 08/07(木)11:29 ID:jDc0ZGtb(7/9) AAS
AA省
607: 与作 08/07(木)19:17 ID:o1NnEstn(4/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
608: 与作 08/07(木)19:18 ID:o1NnEstn(5/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
609: 与作 08/07(木)19:20 ID:o1NnEstn(6/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
610: 08/07(木)21:57 ID:jDc0ZGtb(8/9) AAS
x ?+ax ?+bx=0 ???
λ^2+aλ+b=0
λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt
λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt
λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt))
λ^2-μ=0
0^2-4(-μ)=4μ
(?@)μ>0のときλ=±√μなので
X= C_1 e^(√μ x)+C_2 e^(-√μ x)
X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x)
境界条件 u_x (0,t)=u_x (1,t)=0より
u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0
μ>0なので
C_1-C_2=0 C_1=C_2
u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0
C_1=C_2なので
(C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0
μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0
(※e^√μ=e^(-√μ)となるのはμ=0のときだけ)
X(x)=0 ∴u(x,t)=X(x)T(t)=0
(?A)μ=0のとき重解なので
X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x
境界条件 u_x (0,t)=u_x (1,t)=0より
X^' (0)=X^' (1)= C_2=0
X=C_1
611: 08/07(木)21:58 ID:jDc0ZGtb(9/9) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
612: 08/08(金)09:05 ID:K5nrmcJ7(1/5) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
613: 08/08(金)11:49 ID:K5nrmcJ7(2/5) AAS
AA省
614: 08/08(金)11:50 ID:K5nrmcJ7(3/5) AAS
|∫_a^b▒f(x) sin(αx)dx|
=|?_(k=1)^n▒〖∫_(x_k)^(x_(k+1))▒f(x) sin(αx)dx〗|
=|∫_(x_1)^(x_2)▒f(x) sin(αx)dx+∫_(x_2)^(x_3)▒f(x) sin(αx)dx+⋯+∫_(x_n)^(x_(n+1))▒f(x) sin(αx)dx|
≤|∫_(x_1)^(x_2)▒f(x) sin(αx)dx|+|∫_(x_2)^(x_3)▒f(x) sin(αx)dx|+⋯+|∫_(x_n)^(x_(n+1))▒f(x) sin(αx)dx|
=?_(k=1)^n▒|∫_(x_k)^(x_(k+1))▒f(x) sin(αx)dx|
=?_(k=1)^n▒|(∫_(x_k)^(x_(k+1))▒f(x) -f(x_k )+f(x_k ))sin(αx)dx|
≤?_(k=1)^n▒(|∫_(x_k)^(x_(k+1))▒( f(x)-f(x_k ) )sin(αx) dx|+|f(x_k ) ∫_(x_k)^(x_(k+1))▒sin(αx) dx|)
≤?_(k=1)^n▒(∫_(x_k)^(x_(k+1))▒|f(x)-f(x_k )||sin(αx)| dx+|f(x_k )||∫_(x_k)^(x_(k+1))▒sin(αx) dx|)
≤?_(k=1)^n▒(∫_(x_k)^(x_(k+1))▒|f(x)-f(x_k )|1 dx+M∫_(x_k)^(x_(k+1))▒|sin(αx)| dx)
∫_(x_k)^(x_(k+1))▒|sin(αx)| dx=|[(-1)/α cos(αx)]_(x_k)^(x_(k+1) ) |=1/α |cos(x_(k+1) )- cos(x_k )|
≤1/α (|cos(x_(k+1) )|+|cos(x_k )|)≤2/α
615: 08/08(金)11:51 ID:K5nrmcJ7(4/5) AAS
|∫_a^b?f(x)sin(αx)dx|
=|?_(k=1)^n??∫_(x_k)^(x_(k+1))?f(x) sin(αx)dx?|
=|∫_(x_1)^(x_2)?f(x) sin(αx)dx+∫_(x_2)^(x_3)?f(x) sin(αx)dx+?+∫_(x_n)^(x_(n+1))?f(x) sin(αx)dx|
?|∫_(x_1)^(x_2)?f(x) sin(αx)dx|+|∫_(x_2)^(x_3)?f(x) sin(αx)dx|+?+|∫_(x_n)^(x_(n+1))?f(x) sin(αx)dx|
=?_(k=1)^n?|∫_(x_k)^(x_(k+1))?f(x) sin(αx)dx|
=?_(k=1)^n?|(∫_(x_k)^(x_(k+1))?f(x) -f(x_k )+f(x_k ))sin(αx)dx|
??_(k=1)^n?(|∫_(x_k)^(x_(k+1))?( f(x)-f(x_k ) )sin(αx) dx|+|f(x_k ) ∫_(x_k)^(x_(k+1))?sin(αx) dx|)
??_(k=1)^n?(∫_(x_k)^(x_(k+1))?|f(x)-f(x_k )||sin(αx)| dx+|f(x_k )||∫_(x_k)^(x_(k+1))?sin(αx) dx|)
??_(k=1)^n?(∫_(x_k)^(x_(k+1))?|f(x)-f(x_k )|1 dx+M∫_(x_k)^(x_(k+1))?|sin(αx)| dx)
∫_(x_k)^(x_(k+1))?|sin(αx)| dx=|[(-1)/α cos(αx)]_(x_k)^(x_(k+1) ) |=1/α |cos(x_(k+1) )- cos(x_k )|
?1/α (|cos(x_(k+1) )|+|cos(x_k )|)?2/α
616: 08/08(金)11:52 ID:K5nrmcJ7(5/5) AAS
|∫_a^b?f(x) sin(αx)dx|??_(k=1)^n?(∫_(x_k)^(x_(k+1))?|f(x)-f(x_k )| dx+2M/α)
∀ε>0∃N s.t. n>N⇒|f(x)-f(x_k )|<ε (k=1,2,?,n)
|∫_a^b?f(x) sin(αx)dx|??_(k=1)^n?(∫_(x_k)^(x_(k+1))?ε dx+2M/α)
=?_(k=1)^n?ε [x]_(x_k)^(x_(k+1) )+ n 2M/α
= ε?_(k=1)^n??x +(2M n)/α=ε(b-a)+(2M n)/α
(2M n)/α?ε?(2M n)/ε?α
lim┬(α→∞) |∫_a^b?f(x) sin(αx)dx|? lim┬(α→∞) (ε(b-a)+(2M n)/α)
=ε(b-a)+ε=ε(b-a+1)
したがって任意の正数εに対し α→∞ のとき |∫_a^b?f(x) sin(αx)dx|=0
lim┬(α→∞)??∫_a^b?f(x) sin(αx)dx?=0
617: 08/09(土)20:44 ID:ayZ85Z+w(1/3) AAS
(∂/∂x+a ∂/∂y)f(x,y)=g(x,y)
f(x,y)=X(x)Y(y)
(∂/∂x+a ∂/∂y)X(x)Y(y)=∂/∂x X(x)Y(y)+a ∂/∂y X(x)Y(y)
∂/∂x X(x)Y(y)+a ∂/∂y X(x)Y(y)=d/dx X(x)Y(y)+a d/dy X(x)Y(y)
(∂/∂x+a ∂/∂y)f(x,y)=0???
(d/dx+a d/dy)XY=d/dx XY+a d/dy XY=0
d/dx XY=-a d/dy XY
( d/dx X)/X=-a ( d/dy Y)/Y
( d/dx X)/X=-a ( d/dy Y)/Y=μ
( d/dx X)/X=μ dX/dx=μX ∫?1/X dX=∫?μ dx
log|X|=μx+C X(x)=C_1 e^μx
( d/dy Y)/Y=-μ/a dY/dy=-μ/a Y ∫?1/Y dY=-∫?μ/a dy
log|Y|=-μ/a y+C Y(y)=C_2 e^(-μ/a y)
∴f(x,y)=X(x)Y(y)=C_1 C_2 e^μx e^(-μ/a y)=C_1 C_2 e^(μ/a (ax-y) )
618: 08/09(土)20:48 ID:ayZ85Z+w(2/3) AAS
?_Cf(x,y)dx
=∫[a→b]f(x,φ_1(x))dx+∫[b→a]f(x,φ_2(x))dx
=∫[a→b]f(x,φ_1(x))dx-∫[a→b]f(x,φ_2(x))dx
=-∫[a→b]f(x,φ_2(x))-f(x,φ_1(x)) dx
=-∫[a→b]∫_(φ_1(x))^(φ_2(x))(∂f(x,y))/∂y dy dx
=-∬_D^ (∂f(x,y))/∂y dxdy
※∫_(φ_1(x))^(φ_2(x))(∂f(x,y))/∂y dy=[( @f(x,y)@ )]_(φ_1(x))^(φ_2(x))=f(x,φ_2(x))-f(x,φ_1(x))
619: 08/09(土)20:50 ID:ayZ85Z+w(3/3) AAS
∇=(∂/∂x ,∂/∂y), ∇f=(∂f/∂x ,∂f/∂y)
(1)∇(C_1 f+C_2 g)=C_1 ∇f+C_2 ∇g
∇(C_1 f+C_2 g)=(∂(C_1 f+C_2 g)/∂x ,∂(C_1 f+C_2 g)/∂y)
=(C_1 ∂f/∂x+C_2 ∂g/∂x ,C_1 ∂f/∂y+C_2 ∂g/∂y)
=C_1 (∂f/∂x ,∂f/∂y)+C_2 (∂g/∂x ,∂g/∂y)
(2)∇(fg)=(∇f)g+f(∇g)
∇(fg)=(∂fg/∂x ,∂fg/∂y)=(∂f/∂x g+f ∂g/∂x, ∂f/∂y g+f ∂g/∂y)
=(∂f/∂x,∂f/∂y)g+f(∂g/∂x,∂g/∂y)=(∇f)g+f(∇g)
(3)∇(f/g)=((∇f)g-f(∇g))/g^2
∇(f/g)=(∂/∂x (f/g) ,∂/∂y (f/g))
=1/g^2 ((∂f/∂x g-f ∂g/∂x) ,(∂f/∂y g-f ∂g/∂y))
620: 08/11(月)15:10 ID:XI0wb1W4(1/5) AAS
?+ax ?+bx=0 ???
λ^2+aλ+b=0
λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt
λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt
λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt))
λ^2-μ=0
0^2-4(-μ)=4μ
(?@)μ>0のときλ=±√μなので
X= C_1 e^(√μ x)+C_2 e^(-√μ x)
X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x)
境界条件 u_x (0,t)=u_x (1,t)=0より
u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0
μ>0なので
C_1-C_2=0 C_1=C_2
u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0
C_1=C_2なので
(C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0
μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0
(※e^√μ=e^(-√μ)となるのはμ=0のときだけ)
X(x)=0 ∴u(x,t)=X(x)T(t)=0
(?A)μ=0のとき重解なので
X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x
境界条件 u_x (0,t)=u_x (1,t)=0より
X^' (0)=X^' (1)= C_2=0
X=C_1
621: 08/11(月)15:11 ID:XI0wb1W4(2/5) AAS
∫_0^∞?(sin(x))/x dx
∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x)
F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0)
dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx
=∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx
=∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx
=-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx
=∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx
=[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx
=0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx
=1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx
=[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx
=-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx
=-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx)
622: 08/11(月)15:12 ID:XI0wb1W4(3/5) AAS
x ?+ax ?+bx=0 ???
λ^2+aλ+b=0
λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt
λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt
λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt))
λ^2-μ=0
0^2-4(-μ)=4μ
(?@)μ>0のときλ=±√μなので
X= C_1 e^(√μ x)+C_2 e^(-√μ x)
X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x)
境界条件 u_x (0,t)=u_x (1,t)=0より
u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0
μ>0なので
C_1-C_2=0 C_1=C_2
u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0
C_1=C_2なので
(C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0
μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0
(※e^√μ=e^(-√μ)となるのはμ=0のときだけ)
X(x)=0 ∴u(x,t)=X(x)T(t)=0
(?A)μ=0のとき重解なので
X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x
境界条件 u_x (0,t)=u_x (1,t)=0より
X^' (0)=X^' (1)= C_2=0
X=C_1
623: 08/11(月)17:21 ID:XI0wb1W4(4/5) AAS
∫_a^b?f(x) sin(αx)dx|?農(k=1)^n?(∫_(x_k)^(x_(k+1))?|f(x)-f(x_k )| dx+2M/α)
∀ε>0∃N s.t. n>N⇒|f(x)-f(x_k )|<ε (k=1,2,?,n)
|∫_a^b?f(x) sin(αx)dx|?農(k=1)^n?(∫_(x_k)^(x_(k+1))?ε dx+2M/α)
=農(k=1)^n?ε [x]_(x_k)^(x_(k+1) )+ n 2M/α
= ε農(k=1)^n??x +(2M n)/α=ε(b-a)+(2M n)/α
(2M n)/α?ε?(2M n)/ε?α
lim┬(α→∞) |∫_a^b?f(x) sin(αx)dx|? lim┬(α→∞) (ε(b-a)+(2M n)/α)
=ε(b-a)+ε=ε(b-a+1)
したがって任意の正数εに対し α→∞ のとき |∫_a^b?f(x) sin(αx)dx|=0
lim┬(α→∞)??∫_a^b?f(x) sin(αx)dx?=0
624: 08/11(月)20:56 ID:XI0wb1W4(5/5) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
625: 08/13(水)00:03 ID:FVxIyWTC(1/6) AAS
∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α)
x:0→1 t:α→β
x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α)
∫_0^1?x^m (1-x)^n dx
=∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt
=1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)!
∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx
=-1/6 (β-α)^3
m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx
=-1/12 (β-α)^4
m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx
=(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5
626: 08/13(水)04:35 ID:FVxIyWTC(2/6) AAS
(∂/∂x+a ∂/∂y)f(x,y)=g(x,y)
f(x,y)=X(x)Y(y)
(∂/∂x+a ∂/∂y)X(x)Y(y)=∂/∂x X(x)Y(y)+a ∂/∂y X(x)Y(y)
∂/∂x X(x)Y(y)+a ∂/∂y X(x)Y(y)=d/dx X(x)Y(y)+a d/dy X(x)Y(y)
(∂/∂x+a ∂/∂y)f(x,y)=0???
(d/dx+a d/dy)XY=d/dx XY+a d/dy XY=0
d/dx XY=-a d/dy XY
( d/dx X)/X=-a ( d/dy Y)/Y
( d/dx X)/X=-a ( d/dy Y)/Y=μ
( d/dx X)/X=μ dX/dx=μX ∫?1/X dX=∫?μ dx
log|X|=μx+C X(x)=C_1 e^μx
( d/dy Y)/Y=-μ/a dY/dy=-μ/a Y ∫?1/Y dY=-∫?μ/a dy
log|Y|=-μ/a y+C Y(y)=C_2 e^(-μ/a y)
∴f(x,y)=X(x)Y(y)=C_1 C_2 e^μx e^(-μ/a y)=C_1 C_2 e^(μ/a (ax-y) )
627: 08/13(水)04:35 ID:FVxIyWTC(3/6) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
628: 08/13(水)10:58 ID:FVxIyWTC(4/6) AAS
y^''+3y^'+2y=x
(D^2+3D+2)y=x
D^2+3D+2=(D+2)(D+1)=0 D=-2, D=-1
y_0=C_1 e^(-2x)+C_2 e^(-x)
(D+2)(D+1) y_s=x
となるようなy_s を求める。
y_s=1/(D+2)(D+1) x=1/((D+2) ) 1/((D+1) ) x
=1/((D+2) ) 1/((D-(-1)) ) x=1/(D+2) e^(-x) 1/D e^x x
=1/(D+2) e^(-x) ∫▒〖e^x x〗 dx=1/(D+2) e^(-x) (e^x x-∫▒e^x dx) (e^x )^'=e^x
=1/(D+2) e^(-x) (xe^x-e^x )=1/(D+2) (x-1)
=1/((D-(-2)) ) x-1/((D-(-2)) )=e^(-2x) 1/D e^2x x-e^(-2x) 1/D e^2x
=e^(-2x) (∫▒〖(1/2 e^2x )^' x〗 dx)-e^(-2x) 1/2 e^2x
=e^(-2x) (1/2 e^2x x-1/2 ∫▒e^2x dx)-1/2
=e^(-2x) (1/2 e^2x x-1/4 e^2x )-1/2=1/2 x-1/4-1/2=1/2 x-3/4
∴y=C_1 e^(-2x)+C_2 e^(-x)+1/2 x-3/4
629: 08/13(水)12:31 ID:FVxIyWTC(5/6) AAS
x^2n - 4x^8 + Ax + B が x^2-x+1 で割り切れるA、Bを求める。
P(x) = x^2n - 4x^8 + Ax + B
とおく。P(x) は x^2-x+1 で割り切れるのだから
P(x) = Q(x)(x^2-x+1)
を満たすQ(x)が存在する。
x^3+1 = (x+1)(x^2-x+1)
x^2-x+1 = 0 の解をωとする。
P(ω) = ω^2n - 4ω^8 + Aω + B = 0
ω^2-ω+1 = 0, ω^2 = ω-1
ω^3+1 = 0, ω^3 = -1
ω^6 = ω^3ω^3 = 1
ω^4 = ω^3ω = -ω
ω^2n-4ω^2ω^6+Aω+B
= ω^2n-4(ω-1)+Aω+B
= ω^2n+B+4+(A-4)ω = 0
n = 3k⇒ω^2n = ω^6k = 1
ω^2n+B+4+(A-4)ω = 1+B+4+(A-4)ω = 0
∴A = 4,B = -5
n = 3k+1⇒ω^2n = ω^(6k+2) = ω^2 = ω-1
ω^2n+B+4+(A-4)ω = ω-1+B+4+(A-4)ω = 0
= B+3+(A-3)ω = 0
∴A = 3,B = -3
n = 3k+2⇒ω^2n = ω^(6k+4) = ω^4 = -ω
ω^2n+B+4+(A-4)ω = -ω+B+4+(A-4)ω = 0
= B+4+(A-5)ω = 0
∴A = 5,B = -4
630: 08/13(水)12:39 ID:FVxIyWTC(6/6) AAS
仕入れ値が3000円の品物50個に、5割の利益を見込んで定価をつけ、定価で5個売り、定価の1割引きの特価品として20個売った。売れ残った品物はさらに値引きし、大特価品として売ろうと思う。それでも売れ残った品物は1個あたり500円支払って処分しなければならない。
(1)処分した品物が5個で、利益が14000円のとき、大特価品は定価の何割引きになるか。
(2)大特価品を定価の2割引きで売るとき、損をしないためには最低何個売ればよいか。
631: 08/14(木)05:17 ID:/DikW1nE(1) AAS
がんばってくれ
632: 08/14(木)08:19 ID:rMV7zp3P(1/5) AAS
AとBが1周400mの円の周りを歩く。AとBが同じ地点から同じ向きに同時に歩き始めると、20分後には初めてAがBを追い抜き、同じ地点から反対向きに同時に歩き始めると、8分後には初めて2人は出会う。Aの歩く速さは分速何mか。
633: 08/14(木)08:25 ID:rMV7zp3P(2/5) AAS
P地点から600m離れたQ地点の間にランニングコースがある。AとBは同時にP地点から走り始めてAB間を往復する。
1時間30分後には6回のすれ違いをして、1時間40分後には初めてAがBを追い越す。Aの速さは分速何mか。
634: 08/14(木)19:12 ID:rMV7zp3P(3/5) AAS
いくつかのガラスのコップがある。いくつかはわからないが、4 個よりは多いことは確かだ。このコップには水が少しずつ入っているが、その水を全部あわせると 1 リットルである。
さて、一番水の量の少ないコップを選んで、その中に入っている水を、そのコップの次に(つまり 2 番目に) 水の量の少ないコップに移し、空になったコップを取り除く。同じことを、コップの数が 2 個になるまでくり返すことにする。ただし、水の量が同じコップが二つあったら、どちらかを適当に選ぶことにする。この時、次の問いに答える。
(1) 最初に最も水の量の多かったコップの水の量が、3 分の 1 リットルより小さいかったならば、このコップは途中で取り除かれるか、さもなければ最後まで残って水の量が増えていることを証明する。
(2) 最初に最も水の量の多かったコップの水の量が、5 分の 2 リットルより多かったならば、このコップは、水の量がかわることなく、最後まで残ることを証明して下さい(ただし、より多い、より少ないと言う時は = の場合を含まない )。
635: 08/14(木)19:13 ID:rMV7zp3P(4/5) AAS
4*7 の 28 個の正方形のマス目をそれぞれ黒か白で塗る。このとき、28 個の正方形の中から
(1) その 4 つはすべて黒かあるいはすべて白である。
(2) その 4 つを結ぶと長方形ができる
という条件を満たすような 4 つを選び出すことができることを証明する。
636: 08/14(木)19:13 ID:rMV7zp3P(5/5) AAS
(1)2 つの自然数 a,b は、条件、a<b,(1/a) + (1/b)<1/4 をみたす。このような a,b の組み合わせのうち、b のもっとも小さいものをすべて求める。
(2) 三つの自然数 a,b,c は、条件、a<b<c、(1/a) + (1/b) + (1/c)<1/3 をみたす。このような a,b,c の組み合わせのうち、c のもっとも小さいものをすべて求める。
637: 与作 08/16(土)23:31 ID:YdM6DFCX(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
638: 与作 08/16(土)23:32 ID:YdM6DFCX(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
639: 与作 08/16(土)23:34 ID:YdM6DFCX(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
640: 08/17(日)10:34 ID:ie59VeEu(1/3) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
641: 08/17(日)10:34 ID:ie59VeEu(2/3) AAS
y^''+3y^'+2y=x
(D^2+3D+2)y=x
D^2+3D+2=(D+2)(D+1)=0 D=-2, D=-1
y_0=C_1 e^(-2x)+C_2 e^(-x)
(D+2)(D+1) y_s=x
となるようなy_s を求める。
y_s=1/(D+2)(D+1) x=1/((D+2) ) 1/((D+1) ) x
=1/((D+2) ) 1/((D-(-1)) ) x=1/(D+2) e^(-x) 1/D e^x x
=1/(D+2) e^(-x) ∫▒〖e^x x〗 dx=1/(D+2) e^(-x) (e^x x-∫▒e^x dx) (e^x )^'=e^x
=1/(D+2) e^(-x) (xe^x-e^x )=1/(D+2) (x-1)
=1/((D-(-2)) ) x-1/((D-(-2)) )=e^(-2x) 1/D e^2x x-e^(-2x) 1/D e^2x
=e^(-2x) (∫▒〖(1/2 e^2x )^' x〗 dx)-e^(-2x) 1/2 e^2x
=e^(-2x) (1/2 e^2x x-1/2 ∫▒e^2x dx)-1/2
=e^(-2x) (1/2 e^2x x-1/4 e^2x )-1/2=1/2 x-1/4-1/2=1/2 x-3/4
∴y=C_1 e^(-2x)+C_2 e^(-x)+1/2 x-3/4
642: 08/17(日)10:36 ID:ie59VeEu(3/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
643: 与作 08/17(日)14:24 ID:XIrE7hQA(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
644: 与作 08/17(日)14:25 ID:XIrE7hQA(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
645: 与作 08/17(日)14:26 ID:XIrE7hQA(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
646: 08/18(月)08:04 ID:FBCMZJZX(1/3) AAS
∫_0^∞?(sin(x))/x dx
∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x)
F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0)
dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx
=∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx
=∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx
=-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx
=∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx
=[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx
=0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx
=1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx
=[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx
=-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx
=-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx)
647: 08/18(月)08:05 ID:FBCMZJZX(2/3) AAS
x ?+ax ?+bx=0 ???
λ^2+aλ+b=0
λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt
λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt
λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt))
λ^2-μ=0
0^2-4(-μ)=4μ
(?@)μ>0のときλ=±√μなので
X= C_1 e^(√μ x)+C_2 e^(-√μ x)
X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x)
境界条件 u_x (0,t)=u_x (1,t)=0より
u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0
μ>0なので
C_1-C_2=0 C_1=C_2
u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0
C_1=C_2なので
(C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0
μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0
(※e^√μ=e^(-√μ)となるのはμ=0のときだけ)
X(x)=0 ∴u(x,t)=X(x)T(t)=0
(?A)μ=0のとき重解なので
X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x
境界条件 u_x (0,t)=u_x (1,t)=0より
X^' (0)=X^' (1)= C_2=0
X=C_1
648: 08/18(月)08:11 ID:FBCMZJZX(3/3) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
h→0
f^((k+1)) (z)=(k+1)!/(2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
649: 与作 08/18(月)12:05 ID:HdXNQXxj(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
650: 与作 08/18(月)12:05 ID:HdXNQXxj(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
651: 与作 08/18(月)12:06 ID:HdXNQXxj(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
652: 08/19(火)05:59 ID:UNSSr5hH(1/12) AAS
y''+3y'+2y=x
(D^2+3D+2)y=x
D^2+3D+2=(D+2)(D+1)=0 D=-2, D=-1
y_0=C_1 e^(-2x)+C_2 e^(-x)
(D+2)(D+1) y_s=x
y_s=1/(D+2)(D+1) x=1/((D+2) ) 1/((D+1) ) x
=1/((D+2) ) 1/((D-(-1)) ) x=1/(D+2) e^(-x) 1/D e^x x
=1/(D+2) e^(-x) ∫??e^x x? dx=1/(D+2) e^(-x) (e^x x-∫?e^x dx) (e^x )'=e^x
=1/(D+2) e^(-x) (xe^x-e^x )=1/(D+2) (x-1)
=1/((D-(-2)) ) x-1/((D-(-2)) )=e^(-2x) 1/D e^2x x-e^(-2x) 1/D e^2x
=e^(-2x) (∫??(1/2 e^2x )' x? dx)-e^(-2x) 1/2 e^2x
=e^(-2x) (1/2 e^2x x-1/2 ∫?e^2x dx)-1/2
=e^(-2x) (1/2 e^2x x-1/4 e^2x )-1/2=1/2 x-1/4-1/2=1/2 x-3/4
∴y=C_1 e^(-2x)+C_2 e^(-x)+1/2 x-3/4
653: 08/19(火)06:00 ID:UNSSr5hH(2/12) AAS
y'''(x) + 6y''(x) + 12y'(x) + 8y(x) = 5x^2e^(-2x) ・・・・・(#)
y''' + 6y'' + 12y' + 8y = 5x^2e^(-2x), y(0) = 0, y'(0) = 5, y''(0) = 4
D^3 + 6D^2 + 12D + 8 = (D+2)^3 = 0
D = -2(3重解)
Y = (Cx^2+Bx+A)e^(-2x)
(#)は
((D+2)^3)y = 5(x^2)e^(-2x)
y0 = 5(x^2)e^(-2x)/(D+2)^3
= 5e^(-2x)/( (2+1)(2+2)(2+3) )x^(2+3)
= (x^5/12)e^(-2x)
y(x) = (Cx^2+Bx+A)e^(-2x) + (x^5/12)e^(-2x)
y(0) = 0, y'(0) = 5, y''(0) = 4 のときの特殊解
y(0) = A = 0
y(x) = Cx^2*e^(-2x) + Bx*e^(-2x) + (x^5/12)e^(-2x)
y'(x) = C2xe^(-2x) - 2Cx^2*e^(-2x)
+ B*e^(-2x) - 2Bx*e^(-2x)
+ (5/12)5x^4*e^(-2x) - 2(x^5/12)*e^(-2x)
y'(0) = B = 5
y'(x) = 2Cxe^(-2x) - 2Cx^2*e^(-2x)
+ 5*e^(-2x) - 10x*e^(-2x)
+ (5/12)5x^4*e^(-2x) - 2(x^5/12)*e^(-2x)
y''(x) = 2Ce^(-2x) + 4Cxe^(-2x) - ( 4Cx*e^(-2x) - 2Cx^2(-2)e^(-2x) )
+ (-2)5*e^(-2x) - (10*e^(-2x) - 2*10x*e^(-2x) )
+ (5/12)20x^3*e^(-2x) - 2(5/12)5x^4*e^(-2x)
- ( 2(4x^4/12)*e^(-2x) - 2*2(x^5/12)*e^(-2x) )
y''(0) = 2C - 10 - 10 = 4
C = 12
y(x) = ( 12x^2+5x+(x^5/12) )e^(-2x)
654: 08/19(火)06:06 ID:UNSSr5hH(3/12) AAS
(D^2+1)y=1/(?cos?^3 (x) )
(D^2+1)y=0
λ^2+1=0 λ=0±i
y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x)
cos(x)=((e^ix+e^(-ix))/2)
1/(cos^3(x))=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3
(D^2+1) y_s=8/(e^ix+e^(-ix) )^3
(D+i)(D-i) y_s=8/(e^ix+e^(-ix) )^3
y_s=(1/(D+i))(1/(D-i)) 8/(e^ix+e^(-ix) )^3
1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix 1/D e^(-ix) 1/(e^ix+e^(-ix) )^3
=8e^ix ∫e^(-ix)/(e^ix+e^(-ix) )^3 dx
e^(-ix)/(e^ix+e^(-ix) )^3 =(e^3ix e^(-ix))/(e^3ix (e^ix+e^(-ix) )^3 )=e^2ix/((e^ix )^3 (e^ix+e^(-ix) )^3 )
=e^2ix/(e^ix (e^ix+e^(-ix) ))^3 =e^2ix/(e^2ix+1)^3
∴1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-2ix)/(e^2ix+1)^3 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫(8e^2ix)/(e^2ix+1)^3 dx=∫(8e^2ix)/t^3 dt/(2ie^2ix )=∫4/t^3 dt/i
=-∫4i/t^3 dt=-4i∫t^(-3) dt =-4i ?-t?^(-2)/2=2it^(-2)
=2i/(e^2ix+1)^2
655: 08/19(火)06:06 ID:UNSSr5hH(4/12) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)
y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
656: 08/19(火)06:08 ID:UNSSr5hH(5/12) AAS
y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6
【ラプラス変換による解法】
L[y''(t)] = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - s/6 - 5/6
L[3y'(t)] = 3( sY(s) - y(0) ) = 3sY(s) - 1/2
L[2y(t)] = 2Y(s)
L[e^(-t)] = 1/(s + 1)
s^2Y(s) - s/6 - 5/6 - (3sY(s) -1/2) + 2Y(s) = 1/(s+1)
Y(s)(s^2 - 3s + 2) - s/6 -1/3 = 1/(s+1)
s 1 1
Y(s)(s-1)(s-2) = ─ + ─ + ──
6 3 s+1
s(s+1) + 2(s+1) + 6 s^2 + 3s + 8
= ────────── = ───────
6(s+1) 6(s+1)
s^2 + 3s + 8 A B C
Y(s) = ──────── = ── + ── + ──
6(s+1)(s-1)(s-2) s+1 s-1 s-2
s^2 + 3s + 8 = 6( A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) )
s = -1 のとき 1 - 3 + 8 = 6A(-2)(-3) 36A = 6 A = 1/6
s = 1 のとき 1 + 3 + 8 = 6B(2)(-1) -12B = 12 B = -1
s = 2 のとき 4 + 6 + 8 = 6C(3)(1) 18C = 18 C = 1
657: 08/19(火)06:08 ID:UNSSr5hH(6/12) AAS
したがって
1/6 1 1
Y(s) = ── - ── + ──
s+1 s-1 s-2
逆ラプラス変換して
y(t) = -e^t + e^(2t) + (1/6)e^(-t)
【演算子法による解法】
特性方程式は
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
なので
y''(t) - 3'y(t) + 2y(t) = 0
の一般解 y0 は
y0 = C1e^t + C2e^(2t)
?の特殊解をv(t)とすると
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
よって?の一般解は
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
??より
C1 = -1, C2= 1
初期値を満たす特殊解を改めて y とおくと
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
658: 08/19(火)06:10 ID:UNSSr5hH(7/12) AAS
AA省
659: 08/19(火)06:10 ID:UNSSr5hH(8/12) AAS
AA省
660: 与作 08/19(火)10:37 ID:0I4aqNXf(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
661: 与作 08/19(火)10:38 ID:0I4aqNXf(2/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
662: 与作 08/19(火)10:39 ID:0I4aqNXf(3/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
663: 08/19(火)19:49 ID:UNSSr5hH(9/12) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
664: 08/19(火)19:51 ID:UNSSr5hH(10/12) AAS
y''+ 2y' + 5y = 10cos(t)
y''+ 2y' + 5y = 0
y0 = e^(-t)( C1cos(2t) + C2sin(2t) )
e^iat/φ(D) = e^iat/φ(ia) …… (2)
(1)の特殊解を v とすると
(D^2+2D+5)v = 10e^it
(2)を使って
10e^it/(D^2+2D+5)
2cos(t) - icos(t) - 2isin(t) + sin(t)
v = 2cos(t) + sin(t)
y = e^(-t)( C1cos(2t) + C2sin(2t) ) + 2cos(t) + sin(t)
665: 与作 08/19(火)20:37 ID:0I4aqNXf(4/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
666: 与作 08/19(火)20:38 ID:0I4aqNXf(5/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
667: 与作 08/19(火)20:38 ID:0I4aqNXf(6/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
668: 08/19(火)22:08 ID:UNSSr5hH(11/12) AAS
∇=(∂/∂x ,∂/∂y), ∇f=(∂f/∂x ,∂f/∂y)
(1)∇(C_1 f+C_2 g)=C_1 ∇f+C_2 ∇g
∇(C_1 f+C_2 g)=(∂(C_1 f+C_2 g)/∂x ,∂(C_1 f+C_2 g)/∂y)
=(C_1 ∂f/∂x+C_2 ∂g/∂x ,C_1 ∂f/∂y+C_2 ∂g/∂y)
=C_1 (∂f/∂x ,∂f/∂y)+C_2 (∂g/∂x ,∂g/∂y)
(2)∇(fg)=(∇f)g+f(∇g)
∇(fg)=(∂fg/∂x ,∂fg/∂y)=(∂f/∂x g+f ∂g/∂x, ∂f/∂y g+f ∂g/∂y)
=(∂f/∂x,∂f/∂y)g+f(∂g/∂x,∂g/∂y)=(∇f)g+f(∇g)
(3)∇(f/g)=((∇f)g-f(∇g))/g^2
∇(f/g)=(∂/∂x (f/g) ,∂/∂y (f/g))
=1/g^2 ((∂f/∂x g-f ∂g/∂x) ,(∂f/∂y g-f ∂g/∂y))
669: 08/19(火)22:12 ID:UNSSr5hH(12/12) AAS
∫_0^∞?(sin(x))/x dx
∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x)
F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0)
dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx
=∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx
=∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx
=-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx
=∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx
=[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx
=0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx
=1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx
=[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx
=-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx
=-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx)
670: 与作 08/20(水)08:45 ID:X9kJ+Syw(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
671: 与作 08/20(水)08:46 ID:X9kJ+Syw(2/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
672: 与作 08/20(水)08:46 ID:X9kJ+Syw(3/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
673: 08/20(水)10:07 ID:kS5YreVJ(1/9) AAS
1/m+1/n=3/77 (m>n)を満たす自然数の組(m,n)
1/m+1/n=(m+n)/mn=3/77 77(m+n)=3mn
3mn-77m-77n=0
9mn-231m-231n=0
(3m-77)(3n-77)-77^2=0
(3m-77)(3n-77)=77^2=7^2・11^2
(7^2・11^2,1), (7・11^2,7),(7^2・11,11),(11^2・7,7),(11^2,7^2 )
?(7^2・11^2,1)のとき
3m-77=7^2・11^2 3m=7^2・11^2+77=6006 ∴m=2002
3n-77=1 3n=78 ∴n=26
?(7・11^2,7)のとき
3m-77=7・11^2 3m=7・11^2+77=924 ∴m=308
3n-77=7 3n=7+77=84 ∴n=28
?(7^2・11,11)のとき
3m-77=11・7^2 3m=11・7^2+77=616
?(11^2,7^2 )のとき
3m-77=11^2 3m=11^2+77=198 ∴m=66
3n-77=7^2 3n=7^2+77=84 ∴n=42
(m,n)=(2002,26), (308,28), (66,42)
674: 08/20(水)10:09 ID:kS5YreVJ(2/9) AAS
e^(-1.822r)( 0.223 + 0.223e^r + 0.223e^(2r) + 0.331e^(3r) ) = 1
0.223e^(-1.822r) + 0.223e^(-0.822r) + 0.223e^(0.178r) + 0.331e^(1.178r) = 1
f(r) = 0.223e^(-1.822r) + 0.223e^(-0.822r) + 0.223e^(0.178r) + 0.331e^(1.178r)
f'(r) = -0.406306e^(-1.822r) - 0.183306e^(-0.822r) + 0.039694e^(0.178r) + 0.389918e^(1.178r)
f'(0) = -0.16
f(r) は下に凸で f(0) = 1,f(1) ≒ 1.5 なので 0 < r < 1 の範囲に r = 0 以外の解がある。
a[0] = 1
a[n]-{0.223e^(-1.822a[n])+0.223e^(-0.822a[n])+0.223e^(0.178a[n])+0.331e^(1.178a[n])-1}
a[n+1] = ───────────────────────────────────────────
{-0.406306e^(-1.822a[n])-0.183306e^(-0.822a[n])+0.039694e^(0.178a[n])+0.389918e^(1.178a[n])}
a[1] = 0.5926787635…
a[2] = 0.3745976647…
a[3] = 0.2787742875…
a[4] = 0.2500774128…
a[5] = 0.2469209086…
a[6] = 0.2468816358…
a[7] = 0.2468816298…
a[8] = 0.2468816298…
675: 08/20(水)10:10 ID:kS5YreVJ(3/9) AAS
{! 123456789 <─-i
101110011 1*2^8+1*2^7+・・・・・+1*2^0 i
x := 2*x+v 2*0+1 1
2*(2*0+1)+0 2
2*(2*(2*0+1)+0)+1 3
2*(2*(2*(2*0+1)+0)+1)+1 4
2*(2*(2*(2*(2*0+1)+0)+1)+1)+1 5
2*(2*(2*(2*(2*(2*0+1)+0)+1)+1)+1)+0 6
2*(2*(2*(2*(2*(2*(2*0+1)+0)+1)+1)+1)+0)+0 7
2*(2*(2*(2*(2*(2*(2*(2*0+1)+0)+1)+1)+1)+0)+0)+1 8
2*(2*(2*(2*(2*(2*(2*(2*(2*0+1)+0)+1)+1)+1)+0)+0)+1)+1 9 !}
function BinToDec(const S: string):string;
var
i,x,v,n: Integer;
begin
Result := '';
x := 0;
n := Length(S);
for i := 1 to n do
begin
v := Ord(S[i]) - Ord('0');
x := 2*x+v;
end;
Result := IntToStr(x);
end;
676: 08/20(水)10:17 ID:kS5YreVJ(4/9) AAS
∫[a→b]dx/√((x-a)(x-b))
=∫[a→b]dx/√{-x^2+(a+b)x-ab}
=∫[a→b]dx/√{(1/4)(a+b)^2-ab-{x-(a+b)/2}^2}
=∫[a→b]dx/√{(1/4)(a-b)^2-{x-(a+b)/2}^2}
= {2/(b-a)}∫[a→b]dx/√{1-{2{x-(a+b)/2}/(b-a)}^2}
= [arcsin{2{x-(a+b)/2}/(b-a)}][a→b]
=π
677: 08/20(水)10:23 ID:kS5YreVJ(5/9) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=?[n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
|z-i|/√2=|(z-i)/(1-i)|>1
すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。
1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i))
=-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?)
=-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?)
=-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?)
=-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?)
=-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?)
=-?[n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n)
※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2
(1-i)^n=2^n/(1+i)^n
()^?
678: 与作 08/20(水)14:07 ID:X9kJ+Syw(4/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
679: 与作 08/20(水)14:07 ID:X9kJ+Syw(5/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
680: 与作 08/20(水)14:08 ID:X9kJ+Syw(6/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
681: 08/20(水)18:15 ID:kS5YreVJ(6/9) AAS
y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6
L[y''(t)] = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - s/6 - 5/6
L[3y'(t)] = 3( sY(s) - y(0) ) = 3sY(s) - 1/2
L[2y(t)] = 2Y(s)
L[e^(-t)] = 1/(s + 1)
s^2Y(s) - s/6 - 5/6 - (3sY(s) -1/2) + 2Y(s) = 1/(s+1)
Y(s)(s^2 - 3s + 2) - s/6 -1/3 = 1/(s+1)
s 1 1
Y(s)(s-1)(s-2) = ─ + ─ + ──
6 3 s+1
s(s+1) + 2(s+1) + 6 s^2 + 3s + 8
= ────────── = ───────
6(s+1) 6(s+1)
s^2 + 3s + 8 A B C
Y(s) = ──────── = ── + ── + ──
6(s+1)(s-1)(s-2) s+1 s-1 s-2
s^2 + 3s + 8 = 6( A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) )
s = -1 のとき 1 - 3 + 8 = 6A(-2)(-3) 36A = 6 A = 1/6
s = 1 のとき 1 + 3 + 8 = 6B(2)(-1) -12B = 12 B = -1
s = 2 のとき 4 + 6 + 8 = 6C(3)(1) 18C = 18 C = 1
682: 08/20(水)18:16 ID:kS5YreVJ(7/9) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
683: 08/20(水)18:25 ID:kS5YreVJ(8/9) AAS
y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6
L[y''(t)] = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - s/6 - 5/6
L[3y'(t)] = 3( sY(s) - y(0) ) = 3sY(s) - 1/2
L[2y(t)] = 2Y(s)
L[e^(-t)] = 1/(s + 1)
s^2Y(s) - s/6 - 5/6 - (3sY(s) -1/2) + 2Y(s) = 1/(s+1)
Y(s)(s^2 - 3s + 2) - s/6 -1/3 = 1/(s+1)
Y(s)(s-1)(s-2) = s/6+1/3+1/(s+1) = (s(s+1)+2(s+1)+6)/6(s+1) = (s^2 + 3s + 8)/6(s+1)
Y(s) = (s^2 + 3s + 8)/6(s+1)(s-1)(s-2) = A/(s+1) + B/(s-1) + C/(s-2)
s^2 + 3s + 8 = 6( A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) )
s = -1 のとき 1 - 3 + 8 = 6A(-2)(-3) 36A = 6 A = 1/6
s = 1 のとき 1 + 3 + 8 = 6B(2)(-1) -12B = 12 B = -1
s = 2 のとき 4 + 6 + 8 = 6C(3)(1) 18C = 18 C = 1
Y(s) = 1/6(s+1) - 1/(s-1) + 1/(s-2)
y(t) = -e^t + e^(2t) + (1/6)e^(-t)
684: 08/20(水)18:25 ID:kS5YreVJ(9/9) AAS
y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
y''(t) - 3'y(t) + 2y(t) = 0
y0 = C1e^t + C2e^(2t)
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
??より
C1 = -1, C2= 1
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
685: 08/21(木)00:21 ID:bs1zgXNt(1/5) AAS
y^''+y=sin(2x)
λ^2+1=0 λ=0±i
y_0=C_1 cos(x)+C_2 sin(x)
y_1=cos(x), y_2=sin(x)
?y_1?^'=-sin(x), ?y_2?^'=cos(x)
W=|?( cos(x)@-sin(x) )?( sin(x) @ cos(x) )|
=?cos?^2 (x)+?sin?^2 (x)=1
y_s (x)=-y_1 ∫?(y_2 R(x))/W dx+y_2 ∫?(y_1 R(x))/W dx
=-cos(x) ∫?sin(x)sin(2x) dx+sin(x) ∫?cos(x)sin(2x) dx
∫?sin(2x)sin(x) dx=-1/2 ∫??cos(2x+x)-cos(2x-x) ? dx
=-1/2 ∫??cos(3x)-cos(x) ? dx=-1/2?1/3 sin(3x)+1/2 sin(x)
=-1/6 sin(3x)+1/2 sin(x)
∫?sin(2x)cos(x) dx=1/2 ∫??sin(2x+x)+sin(2x-x) ? dx
=1/2 ∫??sin(3x)+sin(x) ? dx=1/2?(-1)/3 cos(3x)+(-1)/2 cos(x)
=-1/6 cos(3x)-1/2 cos(x)
y_s (x)
=-cos(x)(-1/6 sin(3x)+1/2 sin(x))+sin(x)(-1/6 cos(3x)-1/2 cos(x))
=1/6 sin(3x)cos(x)-1/2 sin(x)cos(x)-1/6 cos(3x)sin(x)-1/2 sin(x)cos(x)
=1/6 sin(3x-x)-sin(x)cos(x)=1/6 sin(2x)-1/2 sin(2x)
=-1/3 sin(2x)
∴y=C_1 cos(x)+C_2 sin(x)-1/3 sin(2x)
686: 08/21(木)03:56 ID:bs1zgXNt(2/5) AAS
AA省
687: 08/21(木)03:57 ID:bs1zgXNt(3/5) AAS
AA省
688: 08/21(木)03:57 ID:bs1zgXNt(4/5) AAS
AA省
689: 08/21(木)03:59 ID:bs1zgXNt(5/5) AAS
AA省
690: 与作 08/21(木)10:21 ID:iG3fWWAA(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
691: 与作 08/21(木)10:22 ID:iG3fWWAA(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
692: 与作 08/21(木)10:22 ID:iG3fWWAA(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
693: 08/22(金)06:44 ID:aTp7UHTZ(1/9) AAS
y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6
L[y''(t)] = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - s/6 - 5/6
L[3y'(t)] = 3( sY(s) - y(0) ) = 3sY(s) - 1/2
L[2y(t)] = 2Y(s)
L[e^(-t)] = 1/(s + 1)
s^2Y(s) - s/6 - 5/6 - (3sY(s) -1/2) + 2Y(s) = 1/(s+1)
Y(s)(s^2 - 3s + 2) - s/6 -1/3 = 1/(s+1)
Y(s)(s-1)(s-2) = s/6+1/3+1/(s+1) = (s(s+1)+2(s+1)+6)/6(s+1) = (s^2 + 3s + 8)/6(s+1)
Y(s) = (s^2 + 3s + 8)/6(s+1)(s-1)(s-2) = A/(s+1) + B/(s-1) + C/(s-2)
s^2 + 3s + 8 = 6( A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) )
s = -1 のとき 1 - 3 + 8 = 6A(-2)(-3) 36A = 6 A = 1/6
s = 1 のとき 1 + 3 + 8 = 6B(2)(-1) -12B = 12 B = -1
s = 2 のとき 4 + 6 + 8 = 6C(3)(1) 18C = 18 C = 1
Y(s) = 1/6(s+1) - 1/(s-1) + 1/(s-2)
y(t) = -e^t + e^(2t) + (1/6)e^(-t)
694: 08/22(金)06:45 ID:aTp7UHTZ(2/9) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
なので
y''(t) - 3'y(t) + 2y(t) = 0
の一般解 y0 は
y0 = C1e^t + C2e^(2t)
?の特殊解をv(t)とすると
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
よって?の一般解は
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
??より
C1 = -1, C2= 1
初期値を満たす特殊解を改めて y とおくと
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
695: 08/22(金)07:19 ID:aTp7UHTZ(3/9) AAS
D^2+1)y=1/(?cos?^3 (x) )
(D^2+1)y=0
λ^2+1=0 λ=0±i
y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x)
cos(x)=((e^ix+e^(-ix))/2)
1/(cos^3(x))=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3
(D^2+1) y_s=8/(e^ix+e^(-ix) )^3
(D+i)(D-i) y_s=8/(e^ix+e^(-ix) )^3
y_s=(1/(D+i))(1/(D-i)) 8/(e^ix+e^(-ix) )^3
1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix 1/D e^(-ix) 1/(e^ix+e^(-ix) )^3
=8e^ix ∫e^(-ix)/(e^ix+e^(-ix) )^3 dx
e^(-ix)/(e^ix+e^(-ix) )^3 =(e^3ix e^(-ix))/(e^3ix (e^ix+e^(-ix) )^3 )=e^2ix/((e^ix )^3 (e^ix+e^(-ix) )^3 )
=e^2ix/(e^ix (e^ix+e^(-ix) ))^3 =e^2ix/(e^2ix+1)^3
∴1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-2ix)/(e^2ix+1)^3 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫(8e^2ix)/(e^2ix+1)^3 dx=∫(8e^2ix)/t^3 dt/(2ie^2ix )=∫4/t^3 dt/i
=-∫4i/t^3 dt=-4i∫t^(-3) dt =-4i ?-t?^(-2)/2=2it^(-2)
=2i/(e^2ix+1)^2
696: 08/22(金)07:20 ID:aTp7UHTZ(4/9) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
h→0
f^((k+1)) (z)=(k+1)!/(2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
697: 与作 08/22(金)08:31 ID:PLenvjYf(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
698: 与作 08/22(金)08:32 ID:PLenvjYf(2/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
699: 与作 08/22(金)08:33 ID:PLenvjYf(3/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
700: 08/22(金)11:01 ID:aTp7UHTZ(5/9) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
|z-i|/√2=|(z-i)/(1-i)|>1
すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。
1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i))
=-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?)
=-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?)
=-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?)
=-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?)
=-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?)
=-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n)
※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2
(1-i)^n=2^n/(1+i)^n
701: 与作 08/22(金)14:28 ID:PLenvjYf(4/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
702: 与作 08/22(金)14:29 ID:PLenvjYf(5/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
703: 与作 08/22(金)14:29 ID:PLenvjYf(6/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
704: 08/22(金)21:47 ID:aTp7UHTZ(6/9) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)
y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
705: 08/22(金)21:48 ID:aTp7UHTZ(7/9) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
706: 08/22(金)22:01 ID:aTp7UHTZ(8/9) AAS
det(r ?,r ?_Q)=|■(x ?&(x_q ) ?@y ?&(y_q ) ? )|=x ?(y_q ) ?-(x_q ) ?(y=) ?x ?(y_q ) ?-x ?y ?+x ?y ?-(x_q ) ?y ?
=x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt)
Δr ? ?Δr ?_Q ?=√(x ?^2+y ?^2 ) √((x_q ) ?^2+(y_q ) ?^2 )
=√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 ).
したがって
Δθ/Δs=(x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) 1/Δr(t+Δt)-r(t)?
=((x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ΔtΔr(t+Δt)-r(t)?^(-1)
=(x ? ((y ?(t+Δt)-y Dt))/Δt-y ? ((x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ?(r(t+Δt)-r(t))/Δt?^(-1)
1/R=(lim)┬(Δt→0)??Δθ/Δs?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? Δr ? ??^(-1)
=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ))
=(x ?y ?-yx ?)/(x ?^2+y ?^2 )^(3/2)
R=(x ?^2+y ?^2 )^(3/2)/(x ?y ?-yx ? )
707: 08/22(金)22:01 ID:aTp7UHTZ(9/9) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
708: 与作 08/23(土)07:20 ID:m3gAX6EE(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
709: 与作 08/23(土)07:21 ID:m3gAX6EE(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
710: 与作 08/23(土)07:22 ID:m3gAX6EE(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
711: 08/23(土)10:48 ID:JXSduFT+(1/5) AAS
y''+y=sin(2x)
λ^2+1=0 λ=0±i
y_0=C_1 cos(x)+C_2 sin(x)
y_1=cos(x), y_2=sin(x)
?y_1?^'=-sin(x), ?y_2?^'=cos(x)
W=|?( cos(x)@-sin(x) )?( sin(x) @ cos(x) )|
=?cos?^2 (x)+?sin?^2 (x)=1
y_s (x)=-y_1 ∫?(y_2 R(x))/W dx+y_2 ∫?(y_1 R(x))/W dx
=-cos(x) ∫?sin(x)sin(2x) dx+sin(x) ∫?cos(x)sin(2x) dx
∫?sin(2x)sin(x) dx=-1/2 ∫??cos(2x+x)-cos(2x-x) ? dx
=-1/2 ∫??cos(3x)-cos(x) ? dx=-1/2?1/3 sin(3x)+1/2 sin(x)
=-1/6 sin(3x)+1/2 sin(x)
∫?sin(2x)cos(x) dx=1/2 ∫??sin(2x+x)+sin(2x-x) ? dx
=1/2 ∫??sin(3x)+sin(x) ? dx=1/2?(-1)/3 cos(3x)+(-1)/2 cos(x)
=-1/6 cos(3x)-1/2 cos(x)
y_s (x)
=-cos(x)(-1/6 sin(3x)+1/2 sin(x))+sin(x)(-1/6 cos(3x)-1/2 cos(x))
=1/6 sin(3x)cos(x)-1/2 sin(x)cos(x)-1/6 cos(3x)sin(x)-1/2 sin(x)cos(x)
=1/6 sin(3x-x)-sin(x)cos(x)=1/6 sin(2x)-1/2 sin(2x)
=-1/3 sin(2x)
∴y=C_1 cos(x)+C_2 sin(x)-1/3 sin(2x)
712: 08/23(土)10:48 ID:JXSduFT+(2/5) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
713: 08/23(土)10:56 ID:JXSduFT+(3/5) AAS
1/m+1/n=3/77 (m>n)を満たす自然数の組(m,n)
1/m+1/n=(m+n)/mn=3/77 77(m+n)=3mn
3mn-77m-77n=0
9mn-231m-231n=0
(3m-77)(3n-77)-77^2=0
(3m-77)(3n-77)=77^2=7^2・11^2
(7^2・11^2,1), (7・11^2,7),(7^2・11,11),(11^2・7,7),(11^2,7^2 )
?(7^2・11^2,1)のとき
3m-77=7^2・11^2 3m=7^2・11^2+77=6006 ∴m=2002
3n-77=1 3n=78 ∴n=26
?(7・11^2,7)のとき
3m-77=7・11^2 3m=7・11^2+77=924 ∴m=308
3n-77=7 3n=7+77=84 ∴n=28
?(7^2・11,11)のとき
3m-77=11・7^2 3m=11・7^2+77=616
?(11^2,7^2 )のとき
3m-77=11^2 3m=11^2+77=198 ∴m=66
3n-77=7^2 3n=7^2+77=84 ∴n=42
(m,n)=(2002,26), (308,28), (66,42)
714: 08/23(土)11:06 ID:JXSduFT+(4/5) AAS
Δr↑=r↑(t+Δt)-r(t). |r↑|=Δs≒RΔθ.
R≒Δs/Δθ, Δx→0⇒Δs→0
1/R=lim[Δx→0])Δθ/Δs=dθ/ds
Δs=√((Δx)^2+(Δy)^2)=√((Δx)^2+(Δy)^2)/(Δx)^2 (Δx)^2 )=√(1+(Δy/Δx)^2 ) Δx
tan(Δθ)= tan(β-θ)=(tanβ-tanθ)/(1+tanβtanθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ≠tan(Δθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ/Δs=((y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x)))/(√(1+(Δy/Δx)^2 )Δx)
=1/√(1+(Δy/Δx)^2 )?1/Δx?(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
=1/√(1+(Δy/Δx)^2 )?(y'(x+Δx)-y'(x))/Δx?1/(1+y'(x+Δx)y'(x))
1/R=dθ/ds=(lim)[Δx→0]Δθ/Δs
=1/√(1+(dy/dx)^2 )(d^2 y)/(dx^2 )1/(1+(dy/dx)^2 )
=((d^2 y)/(dx^2 ))/(1+(dy/dx)^2 )^(3/2)
715: 08/23(土)15:57 ID:JXSduFT+(5/5) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
716: 08/24(日)07:39 ID:2032YQkT(1/2) AAS
et(r ?,r ?_Q)=|■(x ?&(x_q ) ?@y ?&(y_q ) ? )|=x ?(y_q ) ?-(x_q ) ?(y=) ?x ?(y_q ) ?-x ?y ?+x ?y ?-(x_q ) ?y ?
=x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt)
Δr ? ?Δr ?_Q ?=√(x ?^2+y ?^2 ) √((x_q ) ?^2+(y_q ) ?^2 )
=√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 ).
したがって
Δθ/Δs=(x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) 1/Δr(t+Δt)-r(t)?
=((x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ΔtΔr(t+Δt)-r(t)?^(-1)
=(x ? ((y ?(t+Δt)-y Dt))/Δt-y ? ((x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ?(r(t+Δt)-r(t))/Δt?^(-1)
1/R=(lim)┬(Δt→0)??Δθ/Δs?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? Δr ? ??^(-1)
=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ))
=(x ?y ?-yx ?)/(x ?^2+y ?^2 )^(3/2)
R=(x ?^2+y ?^2 )^(3/2)/(x ?y ?-yx ? )
717: 08/24(日)07:39 ID:2032YQkT(2/2) AAS
∇=(∂/∂x ,∂/∂y), ∇f=(∂f/∂x ,∂f/∂y)
(1)∇(C_1 f+C_2 g)=C_1 ∇f+C_2 ∇g
∇(C_1 f+C_2 g)=(∂(C_1 f+C_2 g)/∂x ,∂(C_1 f+C_2 g)/∂y)
=(C_1 ∂f/∂x+C_2 ∂g/∂x ,C_1 ∂f/∂y+C_2 ∂g/∂y)
=C_1 (∂f/∂x ,∂f/∂y)+C_2 (∂g/∂x ,∂g/∂y)
(2)∇(fg)=(∇f)g+f(∇g)
∇(fg)=(∂fg/∂x ,∂fg/∂y)=(∂f/∂x g+f ∂g/∂x, ∂f/∂y g+f ∂g/∂y)
=(∂f/∂x,∂f/∂y)g+f(∂g/∂x,∂g/∂y)=(∇f)g+f(∇g)
(3)∇(f/g)=((∇f)g-f(∇g))/g^2
∇(f/g)=(∂/∂x (f/g) ,∂/∂y (f/g))
=1/g^2 ((∂f/∂x g-f ∂g/∂x) ,(∂f/∂y g-f ∂g/∂y))
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.052s