フェルマーの最終定理の証明 (717レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
711: 08/23(土)10:48 ID:JXSduFT+(1/5) AAS
y''+y=sin(2x)
λ^2+1=0 λ=0±i
y_0=C_1 cos(x)+C_2 sin(x)
y_1=cos(x), y_2=sin(x)
?y_1?^'=-sin(x), ?y_2?^'=cos(x)
W=|?( cos(x)@-sin(x) )?( sin(x) @ cos(x) )|
=?cos?^2 (x)+?sin?^2 (x)=1
y_s (x)=-y_1 ∫?(y_2 R(x))/W dx+y_2 ∫?(y_1 R(x))/W dx
=-cos(x) ∫?sin(x)sin(2x) dx+sin(x) ∫?cos(x)sin(2x) dx
∫?sin(2x)sin(x) dx=-1/2 ∫??cos(2x+x)-cos(2x-x) ? dx
=-1/2 ∫??cos(3x)-cos(x) ? dx=-1/2?1/3 sin(3x)+1/2 sin(x)
=-1/6 sin(3x)+1/2 sin(x)
∫?sin(2x)cos(x) dx=1/2 ∫??sin(2x+x)+sin(2x-x) ? dx
=1/2 ∫??sin(3x)+sin(x) ? dx=1/2?(-1)/3 cos(3x)+(-1)/2 cos(x)
=-1/6 cos(3x)-1/2 cos(x)
y_s (x)
=-cos(x)(-1/6 sin(3x)+1/2 sin(x))+sin(x)(-1/6 cos(3x)-1/2 cos(x))
=1/6 sin(3x)cos(x)-1/2 sin(x)cos(x)-1/6 cos(3x)sin(x)-1/2 sin(x)cos(x)
=1/6 sin(3x-x)-sin(x)cos(x)=1/6 sin(2x)-1/2 sin(2x)
=-1/3 sin(2x)
∴y=C_1 cos(x)+C_2 sin(x)-1/3 sin(2x)
712: 08/23(土)10:48 ID:JXSduFT+(2/5) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
713: 08/23(土)10:56 ID:JXSduFT+(3/5) AAS
1/m+1/n=3/77 (m>n)を満たす自然数の組(m,n)
1/m+1/n=(m+n)/mn=3/77 77(m+n)=3mn
3mn-77m-77n=0
9mn-231m-231n=0
(3m-77)(3n-77)-77^2=0
(3m-77)(3n-77)=77^2=7^2・11^2
(7^2・11^2,1), (7・11^2,7),(7^2・11,11),(11^2・7,7),(11^2,7^2 )
?(7^2・11^2,1)のとき
3m-77=7^2・11^2 3m=7^2・11^2+77=6006 ∴m=2002
3n-77=1 3n=78 ∴n=26
?(7・11^2,7)のとき
3m-77=7・11^2 3m=7・11^2+77=924 ∴m=308
3n-77=7 3n=7+77=84 ∴n=28
?(7^2・11,11)のとき
3m-77=11・7^2 3m=11・7^2+77=616
?(11^2,7^2 )のとき
3m-77=11^2 3m=11^2+77=198 ∴m=66
3n-77=7^2 3n=7^2+77=84 ∴n=42
(m,n)=(2002,26), (308,28), (66,42)
714: 08/23(土)11:06 ID:JXSduFT+(4/5) AAS
Δr↑=r↑(t+Δt)-r(t). |r↑|=Δs≒RΔθ.
R≒Δs/Δθ, Δx→0⇒Δs→0
1/R=lim[Δx→0])Δθ/Δs=dθ/ds
Δs=√((Δx)^2+(Δy)^2)=√((Δx)^2+(Δy)^2)/(Δx)^2 (Δx)^2 )=√(1+(Δy/Δx)^2 ) Δx
tan(Δθ)= tan(β-θ)=(tanβ-tanθ)/(1+tanβtanθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ≠tan(Δθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ/Δs=((y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x)))/(√(1+(Δy/Δx)^2 )Δx)
=1/√(1+(Δy/Δx)^2 )?1/Δx?(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
=1/√(1+(Δy/Δx)^2 )?(y'(x+Δx)-y'(x))/Δx?1/(1+y'(x+Δx)y'(x))
1/R=dθ/ds=(lim)[Δx→0]Δθ/Δs
=1/√(1+(dy/dx)^2 )(d^2 y)/(dx^2 )1/(1+(dy/dx)^2 )
=((d^2 y)/(dx^2 ))/(1+(dy/dx)^2 )^(3/2)
715: 08/23(土)15:57 ID:JXSduFT+(5/5) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s