フェルマーの最終定理の証明 (721レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
716: 132人目の素数さん [] 2025/08/24(日) 07:39:32.07 ID:2032YQkT et(r ?,r ?_Q)=|■(x ?&(x_q ) ?@y ?&(y_q ) ? )|=x ?(y_q ) ?-(x_q ) ?(y=) ?x ?(y_q ) ?-x ?y ?+x ?y ?-(x_q ) ?y ? =x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt) Δr ? ?Δr ?_Q ?=√(x ?^2+y ?^2 ) √((x_q ) ?^2+(y_q ) ?^2 ) =√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 ). したがって Δθ/Δs=(x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) 1/Δr(t+Δt)-r(t)? =((x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ΔtΔr(t+Δt)-r(t)?^(-1) =(x ? ((y ?(t+Δt)-y Dt))/Δt-y ? ((x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ?(r(t+Δt)-r(t))/Δt?^(-1) 1/R=(lim)┬(Δt→0)??Δθ/Δs?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? Δr ? ??^(-1) =(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) =(x ?y ?-yx ?)/(x ?^2+y ?^2 )^(3/2) R=(x ?^2+y ?^2 )^(3/2)/(x ?y ?-yx ? ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/716
717: 132人目の素数さん [] 2025/08/24(日) 07:39:56.70 ID:2032YQkT ∇=(∂/∂x ,∂/∂y), ∇f=(∂f/∂x ,∂f/∂y) (1)∇(C_1 f+C_2 g)=C_1 ∇f+C_2 ∇g ∇(C_1 f+C_2 g)=(∂(C_1 f+C_2 g)/∂x ,∂(C_1 f+C_2 g)/∂y) =(C_1 ∂f/∂x+C_2 ∂g/∂x ,C_1 ∂f/∂y+C_2 ∂g/∂y) =C_1 (∂f/∂x ,∂f/∂y)+C_2 (∂g/∂x ,∂g/∂y) (2)∇(fg)=(∇f)g+f(∇g) ∇(fg)=(∂fg/∂x ,∂fg/∂y)=(∂f/∂x g+f ∂g/∂x, ∂f/∂y g+f ∂g/∂y) =(∂f/∂x,∂f/∂y)g+f(∂g/∂x,∂g/∂y)=(∇f)g+f(∇g) (3)∇(f/g)=((∇f)g-f(∇g))/g^2 ∇(f/g)=(∂/∂x (f/g) ,∂/∂y (f/g)) =1/g^2 ((∂f/∂x g-f ∂g/∂x) ,(∂f/∂y g-f ∂g/∂y)) http://rio2016.5ch.net/test/read.cgi/math/1745314067/717
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.863s*