不等式への招待 第11章 (203レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
81(2): 2024/03/24(日)02:17 ID:JQZhW1Hp(1/4) AAS
〔問題189〕
a, b, c >0 に対して、以下の不等式が成り立つことを証明せよ:
{(a+2b)(b+2c)(c+2a)}^2 ≧ 27(ab+bc+ca)^3,
だるまにおん:作
Casphy!−高校数学板−不等式スレ1−339
2chの過去スレ (第3章)−727, 737, 739
Inequalitybot [189]
外部リンク:twitter,com/Inequalitybot/status/1771144946873217064
[補題]
a+b+c=s, ab+bc+ca=t とおくと
|(a-b)(b-c)(c-a)| ≦ (2/√3)(ss-3t)t/s,
等号成立は {a, b, c} = {0, √3 -1, √3 +1} のとき。
82(1): 2024/03/24(日)17:35 ID:JQZhW1Hp(2/4) AAS
(a-b)(b-c)(c-a) = ? を 差積 とよぶ。
|?| ≦ 2/(3√3)・(ss-3t)^{3/2},
(略証)
?^2 = (4/27)(ss-3t)^3 − (1/27){(2a-b-c)((2b-c-a)(2c-a-b)}^2
≦ (4/27)(ss-3t)^3.
〔問題3.98〕
任意の実数a,b,cに対して
|?| ≦ 9/(16√2)・(ss-2t)^2 /s
IMO-2006
Inequalitybot [7]
佐藤(訳)「美しい不等式の世界」朝倉書店 (2013) p.142
問題3.98
83: 2024/03/24(日)17:36 ID:JQZhW1Hp(3/4) AAS
〔問題1.96〕
a,b,c を非負実数とする。このとき、
|(a-b)(b-c)(c-a)| ≦ (a^3+b^3+c^3−3abc)/4
(略証)
b は a, c の中間にあるとする。
a^3+b^3+c^3 − 3abc = (a+b+c)(aa+bb+cc-ab-bc-ca),
と因数分解する。
a+b+c ≧ |a-b| + |b-c| + min{|a-b|, |b-c|}
aa + bb + cc - ab - bc - ca = (a-b)^2 + (a-b)(b-c) + (b-c)^2,
辺々掛けて
a^3+b^3+c^3−3abc ≧ (|a-b|+|b-c|)^3
= (|a-b|+|b-c|)^2・|c-a|
≧ 4|a-b||b-c||c-a|
= 4|?|,
ルーマニアMO-2007
佐藤(訳)「美しい不等式の世界」朝倉書店 (2013) p.43
演習問題1.96
84: 2024/03/24(日)17:37 ID:JQZhW1Hp(4/4) AAS
〔楠瀬の不等式〕
a,b,c ≧0 とする。このとき、
|(a-b)(b-c)(c-a)| ≦ (a^3+b^3+c^3−3abc) / Ku,
ここで
Ku = √(9+6√3) = 4.403669475 (楠瀬の定数)
数学セミナー, Vol.31, No.4&7 日本評論社 (1992年4月号&7月号)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.691s*