[過去ログ] 分からない問題はここに書いてね 470 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
891
(1): 2021/10/28(木)13:57 ID:kIypNTQ7(1/2) AAS
元の質問者ではないのだけど
>>874 が気になってるので誰かお願いします

>>876 >>877
[ステップごとの解説] ボタン(※)が出てこないので
Pro版契約しても計算過程の表示は無いんじゃないかと思います

※ ∫_0^∞ 1/(1+e^x) dx ←例えばこんなのだとボタンが出ます
解説の一部しか見せてくれませんが困ってる時には良いヒントになります
899
(3): 891 2021/10/28(木)22:04 ID:kIypNTQ7(2/2) AAS
>>874 の件

・x/(e^x-1) = { x + x^2/2! + x^3/3! +... -(...) }/(e^x-1)
= 1- x^2*{1/2!+x/3!+...}/(e^x-1)

・∫[ε,2ε] log(x)/(1+e^x) dx
= ∫[ε,2ε] log(x)/x * x/(1+e^x) dx
= ∫[ε,2ε] log(x)/x dx - ∫[ε,2ε] log(x)*x*(1/2!+x/3!+...)/(e^x-1)
= [(1/2)log(x)^2][ε,2ε] + o(1)
= (1/2)*{(log(2)+log(ε))^2 - log(ε)^2 } + o(1)
= (1/2)log(2)^2 + log(2)log(ε) + o(1)

・∫[2ε,∞] 1/(e^x-1) dx
= ∫[2ε,∞] (1-e^{-x})'/(1-e^{-x}) dx
= [ log(1-e^{-x}) ][2ε,∞]
= -log(1-e^{-2ε}) = -log(1+e^{-ε}) -log(1-e^{-ε})
= -log(2-1+e^{-2ε}) - log(ε) - log(1 -ε/2! +ε^2/3! -...)
= -log(2) - log(ε) + o(1)

・1/(e^x+1) = 1/(e^x-1) - 2/(e^{2x}-1)

以上をまとめて
∫[ε,∞]log(x)/(1+e^x)dx
= ∫[ε,∞]log(x)/(e^x-1) dx -2∫[ε,∞]log(x)/(e^{2x}-1) dx
= ∫[ε,∞]log(x)/(e^x-1) dx -∫[2ε,∞]log(x/2)/(e^x-1) dx
= ∫[ε,2ε]log(x)/(e^x-1) dx + log(2)∫[2ε,∞] 1/(e^x-1) dx
= (1/2)log(2)^2 + log(2)log(ε) +log(2)*(-log(2) - log(ε)) + o(1)
= -(1/2)log(2)^2 + o(1)

参考
外部リンク:math.stackexchange.com
少し補足しただけでほぼそのまま頂いた.
他の解き方もいくつか載ってる

外部リンク:www.searchonmath.com
latex数式で検索できるサイトが役に立った
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.039s