代数学演習 (154レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
51(1): 2021/09/28(火)15:28 ID:ioTVRrV6(1/4) AAS
K = ℂ(t)を変数tに関する複素数係数の1変数有理関数体とする。uを0でない複素数とし、Lを多項式f(X) = X^4 + 2utX^2 + t∈K[X]のK上の最小分解体とする。
(1) 拡大次数[L : K]を求めよ
(2) ガロア群Gal(L/K)はアーベル群であるか?理由をつけて答えよ。
(京大)
53: 2021/09/28(火)15:39 ID:ioTVRrV6(2/4) AAS
(1) f(X) = 0を解くと、
X = ±√(-ut + √(u^2t^2 - t)), ±√(-ut - √(u^2t^2 - t))
α = √(-ut + √(u^2t^2 - t))
β = √(-ut - √(u^2t^2 - t))
とおくと、
αβ = √-t。
K(α^2)/Kは2次拡大(u≠0なので)
K(√-t)/Kは2次拡大
よって、K(√-t, α^2)/Kは4次拡大
L/K(√-t, α^2)は2次拡大
なので、L/Kは8次拡大。
(2) Gal(L/K)がAbel群なら、すべての部分群は正規部分群なので、すべての中間拡大はGalois拡大になる。
しかし、L/Kの中間拡大K(α)/KはGalois拡大ではない。なぜなら、これがGalois拡大ならαの共役βがK(α)に属さなければならなければいけないが、αβ = √-t∉K(α)なので。
よって、Gal(L/K)はAbel群ではない。
54: 2021/09/28(火)15:40 ID:ioTVRrV6(3/4) AAS
>>52
別にあなたが書いてもいいんですよ
55: 2021/09/28(火)15:43 ID:ioTVRrV6(4/4) AAS
なぜ京大ばかりなのか
・私が受けるから
・東大はネット上では過去3年しか問題が公開されていないから
・東大の問題が難しくて解けないから
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.020s