[過去ログ]
関数型プログラミング言語Haskell Part33 (1002レス)
関数型プログラミング言語Haskell Part33 http://mevius.5ch.net/test/read.cgi/tech/1581326256/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
754: デフォルトの名無しさん [sage] 2021/02/25(木) 20:48:36.35 ID:zWeVIvWn ある対象がモノイドかどうかを問う質問です。 2つのリストのうち要素の少ない方のリストをそのまま返す、 同じ要素数ならば左側のリストをそのまま返す関数 f :: [a] -> [a] -> [a] があるとします。 ここで、ある型aのリスト全体の集合[a]と、その上の二項演算fとの組([a], f)はモノイドを成すでしょうか。 私は次のように、これはモノイドではないと考えます。 このモノイド性を考えるとき、その単位元の候補として、 もし集合に無限リストを含めないのならば最大要素数のリストを、 無限リストを含めるのであれば無限リストを取ります。 他に考えようがありません。 しかし、どちらにしても単位元の一意性が証明できません。 xs、ys 共に最大要素数のリスト、あるいは無限リストであり、かつ xs /= ys を満たすものは(型aによっては)いくらでもあります。 よって、([a], f) はモノイドではないと考えますが、これは正しいでしょうか。 モノイドの定義に照らし合わせるのではなく、 モノイドならば証明できるであろう定理が証明できないことに因っているのが、 なんとも気持ち悪いのですが・・・ そもそもモノイド性を問うには ([a], f) の定義が曖昧なのでしょうか。 http://mevius.5ch.net/test/read.cgi/tech/1581326256/754
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.039s