純粋・応用数学・数学隣接分野(含むガロア理論)21 (252レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
18
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)14:22 ID:60RWf/A5(1/9) AAS
>>16-17
ありがとうございます

さて、補足すれば
ことの起こりは、下記

前スレより
2chスレ:math 2025/06/15 現代数学の系譜 雑談 ◆yH25M02vWFhP
Inter-universal geometry とABC 予想57
2chスレ:math
(引用開始)
>無限公理が存在を主張する集合全体
省33
19: 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)14:24 ID:60RWf/A5(2/9) AAS
>>18
さて 上記を受けて 下記がある
前スレより
2chスレ:math 2025/06/16 現代数学の系譜 雑談 ◆yH25M02vWFhP
1)すっきりの度合いが違うだろ?
 即ち、和記号Σや積記号Πならば、普通その範囲を明示するべきだろ?
 Σ n=1〜∞とか Σ m,n=1〜∞とかね
 では問う 記号∩について 同じことを要求する
 きちんと、記号∩の定義を書け!
 ここ、ツッコミどころだねw
省27
20
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)14:24 ID:60RWf/A5(3/9) AAS
つづき

formulation
There are a lot A, which is the empty set ∅ and with each element
x∈A also the amount x∪{x}contains.
∃A:(∅∈A∧∀x:(x∈A⇒x∪{x}∈A))
The infinity axiom does not merely postulate, as the name might suggest, the existence of any infinite set. It postulates the existence of an inductive set and thus, consequently, the existence of the set of natural numbers according to John von Neumann's model .

Significance for mathematics
Natural numbers
By the existence of at least one inductive set
I together with the exclusion axiom, the existence of natural numbers as a set is also ensured:
省15
21
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)14:26 ID:60RWf/A5(4/9) AAS
>>20

<まとめ>
1)fr.wikipedia にあるように、Axiom of infinity(無限公理)→ 集合 Natural numbers "ω(=N)" の存在を 示すこと
 このために ”by the axiom scheme of comprehension and its uniqueness by the axiom of extensionality”などと、ZFCで使える公理は制限があるのです
2)さて、下記にZFCで『5. 和集合の公理』がある
 "この式は、∪F の存在を直接主張するものではないが 、上記の分出公理を用いて集合 ∪F を A から構築することができる"
 とある。見れば、たかが和集合∪で 面倒なことをしているのです
3)で、和集合∪でこれなのですが、では積集合∩について ZFC公理系でどうか?
 中途半端に 積記号∩ を使うと、そこからメンドクサイことになるのでは?w ;p)
 だから、基礎論屋さんは 積記号∩を使わないと思うがどうよw
省15
26: 07/21(月)20:16 ID:60RWf/A5(5/9) AAS
ふっふ、ほっほ
詰んじゃったな おサルw>>5 ;p)
30
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)23:44 ID:60RWf/A5(6/9) AAS
純粋・応用数学・数学隣接分野(含むガロア理論)20
2chスレ:math
>sphere packingは何年前の数学かな?

うむ
・sphere packing 17世紀の数学者・天文学者ヨハネス・ケプラーの予想
・ガウスは球が規則配置を取る場合についてケプラー予想が正しいことを証明し[5]、問題の解明に一歩近づいたが
・21世紀にコンピュータによる証明で決着したことは有名(本が出版され 日本でもその訳本が出た)
・別に、8次元と24次元における証明は2016年にマリナ・ヴィヤゾフスカによって得られた
 彼女は、2022年 フィールズ賞受賞
・24次元は、リーチ格子(英語版)で、モンスター群のムーンシャインで有名
省12
31
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)23:46 ID:60RWf/A5(7/9) AAS
つづき

20世紀
解決に向けて次のステップを踏み出したのはラースロー・フェイェシュ=トートである。彼は、規則・不規則を問わずあらゆる配置の最大密度を求める問題が、有限個の(しかし非常に多数の)計算に還元されることを示した[1]。これはしらみつぶし法による証明が原理的に可能だということである。フェイェシュ=トートも気づいていたように、十分高性能なコンピュータがあればここからケプラー予想解決への現実的なアプローチが得られる可能性があった。

他方では、あらゆる可能な球配置の最大密度の上界を見つけようという試みがなされていた。イギリスの数学者クロード・アンブローズ・ロジャーズは一つの上界として約78%の値を得た[6]。それに続く数学者の努力によりこの値はわずかに引き下げられたが、立方最密充填の約74%には程遠かった。

1990年にウ=イ・シアン(項武義)はケプラー予想を証明したと発表した。この成果は「エンサイクロペディア・ブリタニカ」および「サイエンス」誌で好意的に取り上げられ、シアンはAMS-MAAジョイントミーティングに招待される栄誉を得た[7]。シアンの主張は幾何学的な手法でケプラー予想を証明したというものだった[8][9]。しかしながら、ガボル・フェイェシュ=トート(ラースローの息子)は論文のレビューで「細部に目を向ければ、重要な言明の多くが容認できるような証明を欠いている」と述べた。ヘイルズはシアンの仕事を詳細に批判し[10]、シアンはこれに反論した[11]。現在ではシアンの証明は不完全なものだったと認められている[12]。

ヘイルズの証明
ミシガン大学に在籍していたトマス・ヘイルズは、ラースロー・フェイェシュ=トートが提案したアプローチ[1]にならい、150個の変数を持つある関数を最小化することによって最大密度配置を見出せると考えた。1992年、大学院生のサミュエル・ファーガソンを助手としたヘイルズは、系統的な線型計画法により、すべての異なる配置の集合に含まれる5000種以上の配置一つ一つについて関数値の下界を求める計画に着手した。すべての配置で関数の下界が立方最密配置の関数値を超えるならば、それがケプラー予想の証明になる。可能なすべてのケースについて下界を求めるには、10万個ほどの線形計画問題を解く必要があった。
省3
32
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)23:46 ID:60RWf/A5(8/9) AAS
つづき

形式的証明
2003年1月、ヘイルズはケプラー予想の完全な形式的証明を求める共同プロジェクトを開始した。その目標は、証明の妥当性に一切の疑問を残さないため、HOL LightやIsabelleなどの自動証明検証(英語版)[訳語疑問点]プログラムにかけられるような形式的証明を構築することであった。プロジェクトは「Flyspeck」と名付けられた。そのうちの3文字、F、P、Kは「Formal Proof of Kepler」(ケプラーの形式的証明)から取ったものである。ヘイルズは完全な形式的証明を構築するのには20年ほどの作業が必要だと見積もっていた。2014年8月10日にプロジェクトの終結が発表された[15]。2015年1月、ヘイルズと21人の共同研究者は「ケプラー予想の形式的証明」と題された論文を公開した[16]

高次元における球充填
最適球充填の問題は1、2、3、8、24次元を除いて未解決である。8次元と24次元における証明は2016年にマリナ・ヴィヤゾフスカによって得られた[22]。

外部リンク:ja.wikipedia.org
マリナ・セルヒイウナ・ヴィヤゾフスカ(ウクライナ語: Марина Сергіївна В'язовська、英語: Maryna Sergiivna Viazovska、1984年12月2日 - )は、ウクライナの女性数学者。球充填問題を8次元と24次元において解決した業績で知られる

業績
2016年に、ヴィヤゾフスカは球充填問題を8次元で[7][8] [9]そして、他の人と協力して24次元で解決した[10] [11]。以前は、問題は3次元以下でしか解決されておらず、3次元での証明(ケプラー予想)にはコンピューターを用いて50,000行のプログラムコードを使用して300ページのテキストで提示されていたが[12]、対照的に、8次元と24次元でのヴィヤゾフスカの証明は、わずか23ページ程で「驚くほど単純」であった [11]。
省11
33
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/21(月)23:47 ID:60RWf/A5(9/9) AAS
つづき

外部リンク:en.wikipedia.org
Leech lattice
In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, E24. It is one of the best models for the kissing number problem. It was discovered by John Leech (1967). It may also have been discovered (but not published) by Ernst Witt in 1940.
Applications
The vertex algebra of the two-dimensional conformal field theory describing bosonic string theory, compactified on the 24-dimensional quotient torus R24/Λ24 and orbifolded by a two-element reflection group, provides an explicit construction of the Griess algebra that has the monster group as its automorphism group. This monster vertex algebra was also used to prove the monstrous moonshine conjectures.

外部リンク:en.wikipedia.org
Monstrous moonshine
外部リンク:ja.wikipedia.org
モンストラス・ムーンシャイン(英: monstrous moonshine)もしくはムーンシャイン理論(英: moonshine theory)とは、モンスター群とモジュラー函数、特に j-不変量との間の予期せぬ関係を指し示す用語、およびそれを記述する理論である。1979年にジョン・コンウェイとサイモン・ノートン(英語版)(Simon Norton)により命名された。今ではその背景として、モンスター群を対称性として持つある共形場理論があることが知られている。コンウェイとノートンによって考案されたムーンシャイン予想は1992年、リチャード・ボーチャーズにより、弦理論や頂点作用素代数(英語版)(vertex operator algebra; VOA)、一般カッツ・ムーディ代数を用いて証明された。
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.023s