フェルマーの最終定理の証明 (738レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
722: 08/27(水)02:57 ID:SaRzx/tC(1/5) AAS
det(r ?,r ?_Q)=|■(x ?&(x_q ) ?@y ?&(y_q ) ? )|=x ?(y_q ) ?-(x_q ) ?(y=) ?x ?(y_q ) ?-x ?y ?+x ?y ?-(x_q ) ?y ?
=x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt)
Δr ? ?Δr ?_Q ?=√(x ?^2+y ?^2 ) √((x_q ) ?^2+(y_q ) ?^2 )
=√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 ).
したがって
Δθ/Δs=(x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) 1/Δr(t+Δt)-r(t)?
=((x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ΔtΔr(t+Δt)-r(t)?^(-1)
=(x ? ((y ?(t+Δt)-y Dt))/Δt-y ? ((x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ?(r(t+Δt)-r(t))/Δt?^(-1)
1/R=(lim)┬(Δt→0)??Δθ/Δs?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? Δr ? ??^(-1)
=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ))
省2
723: 08/27(水)02:58 ID:SaRzx/tC(2/5) AAS
∫[a→b]dx/√((x-a)(x-b))
=∫[a→b]dx/√{-x^2+(a+b)x-ab}
=∫[a→b]dx/√{(1/4)(a+b)^2-ab-{x-(a+b)/2}^2}
=∫[a→b]dx/√{(1/4)(a-b)^2-{x-(a+b)/2}^2}
= {2/(b-a)}∫[a→b]dx/√{1-{2{x-(a+b)/2}/(b-a)}^2}
= [arcsin{2{x-(a+b)/2}/(b-a)}][a→b]
=π
727: 08/27(水)14:36 ID:SaRzx/tC(3/5) AAS
Δr↑=r↑(t+Δt)-r(t). |r↑|=Δs≒RΔθ.
R≒Δs/Δθ, Δx→0⇒Δs→0
1/R=lim[Δx→0])Δθ/Δs=dθ/ds
Δs=√((Δx)^2+(Δy)^2)=√((Δx)^2+(Δy)^2)/(Δx)^2 (Δx)^2 )=√(1+(Δy/Δx)^2 ) Δx
tan(Δθ)= tan(β-θ)=(tanβ-tanθ)/(1+tanβtanθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ≠tan(Δθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ/Δs=((y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x)))/(√(1+(Δy/Δx)^2 )Δx)
=1/√(1+(Δy/Δx)^2 )?1/Δx?(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
=1/√(1+(Δy/Δx)^2 )?(y'(x+Δx)-y'(x))/Δx?1/(1+y'(x+Δx)y'(x))
1/R=dθ/ds=(lim)[Δx→0]Δθ/Δs
省2
728: 08/27(水)14:42 ID:SaRzx/tC(4/5) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
省11
729: 08/27(水)14:43 ID:SaRzx/tC(5/5) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
省5
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.171s*