[過去ログ] 多変数関数論4 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
958: 06/04(水)10:11 ID:Vo5laslH(1/2) AAS
2chスレ:math
<AI Copilot さんが どれくらい賢いか?>(そこそこ賢いようですね)
スタート
いま 数学の多変数複素関数論で 話題になっていることは 何ですか
↓ (google英訳(を若干手直し))
What is the hot topic right now in the theory of functions of several complex variables ?
Copilotさんの回答1
One of the current hot topics in the theory of functions of several complex variables is the (L^2)-theory and its applications. Recent research has focused on the (L^2) existence theorem and (L^2) extension theorem, which play a crucial role in understanding positivity conditions in complex geometry. These results are being used to develop criteria for Griffiths positivity and Nakano positivity of Hermitian metrics on holomorphic vector bundles.
Another active area of research is the study of plurisubharmonic functions, which are essential in complex analysis and geometry. Researchers are investigating the strong openness property and stability of multiplier submodule sheaves associated with singular Nakano semipositive Hermitian metrics.
Would you like more details on any of these topics? I can help break them down further!
省13
959: 06/04(水)10:12 ID:Vo5laslH(2/2) AAS
つづき
さて さらに
Yes, please more.
Copilotさんの回答2
Absolutely! Let's dive deeper.
(L^2)-Theory in Several Complex Variables
The (L^2)-method is a powerful tool in complex analysis, particularly in solving the (\bar{\partial})-equation.
This approach, pioneered by Lars Hörmander, provides existence theorems for holomorphic functions under certain curvature conditions. 1)
Recent research has refined the Oka–Cartan theory using (L2)-methods, leading to precise on hlomorphic extension. 2)
The Bergman kerenel, a fundamental object in complex analysis, has olso been extensively using L2-techniques.2)
省28
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.050s