面白い数学の問題おしえて~な 44問目 (301レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
289: 09/02(火)17:48 ID:fZOAs2Xe(1/11) AAS
以下有限グラフ G = (V,E) とは 有限集合 V と V の2元集合の組とする。よって G はループや多重辺を含まない。以下 「G から辺 {v,w} を取り除いたグラフ(G\{{v,w}} と表す)」、「頂点 v と w を同一視して得られるグラフ(G/<v = w> と表す)」などの記述をもちいるが細かく規定せず多少の不正確な記述を適宜みとめ読者のエスパー力に期待するものとする。
グラフ G の頂点 x に対して x を端点とする辺の数を x の分岐数とよび μ(x) とかく。G の k 次ベッチ数を βₖ(G) と表す。Euler の定理より #V - #E = β₀(G) - β₁(G) である。
290: 09/02(火)17:49 ID:fZOAs2Xe(2/11) AAS
補題 任意の有限木 G について以下のいずれかが成立する。
(1) #G ≦ 2
(2) ある部分グラフの対 H,K で H∩K が一点、H が A₃ と同型であるものが存在する。
(∵) 容易。□
291: 09/02(火)17:49 ID:fZOAs2Xe(3/11) AAS
AA省
292: 09/02(火)17:50 ID:fZOAs2Xe(4/11) AAS
以下頂点の集合 A ⊂ V に対して S(A) := { e∈E ; e∩A ≠ ∅ } と定める。
補題 G = (V,E) が頂点数 n = #V ≧ 2 の連結有限グラフとする。⌈(n + β₁(G))/2⌉ ≧ n であるか、または相異なる頂点の集合 A,B で #A = #B = ⌈(n + β₁(G))/2⌉, S(A) = S(B) = V となるものがとれる。
(∵) 最小反例で前補題の条件を満たすものが存在しないことを示せばよい。
(i) #V = 2,3 のとき。V = {u,v} のときは A = {u}, B = {v}、V = {u,v,w} のときは A = {u,w}, B = {v,w} とすれば条件をみたすから反例となりえない。
(ii) 部分グラフ H と {x,y,z} ⊂ G で {x,y},{y,z} ∈ E、{x,z} ∉E、H ∩ {x,y,z} = {x} のとき。G が最小反例だから ⌈(n-2 + β₁(G))/2⌉ ≧ n-1 であるか A’, B’ ⊂ H で #A’ = #B’ = ⌈(n-2 + β₁(G))/2⌉、S(A’) = S(B’) = H が成立する。前者は容易に矛盾する。後者のときは y ∈ A’ なら A = A’∪{x}、そうでなければ A = A’∪{y} とし y ∈ B’ なら B = B’∪{z}、そうでなければ B = B’∪{z} とすれば条件をみたすから反例となりえない。
(iii) G が (2) を満たすとき。V = {x₁, x₂, ... ,xₙ}, E = {{x₁,x₂}, {x₂, x₃},...,{xₙ, x₁}} としてよい。n が偶数のときは A = {xₖ ; k odd}∪{xₙ}、B = {xₖ ; k even}∪{x₁} が条件を満たし、n が奇数のときは A = {xₖ ; k odd}、B = {xₖ ; k even}∪{x₁} が条件を満たすから反例となりえない。
293: 09/02(火)17:51 ID:fZOAs2Xe(5/11) AAS
AA省
294: 09/02(火)17:51 ID:fZOAs2Xe(6/11) AAS
以下記号の定義を再掲する。W, S は有限集合、f : S → 2^W は写像で A ⊂ W に対して S(A) = { s ; f(s)∩A ≠ ∅ } とする。さらに
(※) 任意の A≠∅ に対して S(A)≠∅
とする。
(W : ワインの集合、S : 奴隷の集合、f(s) : 奴隷 s が飲むワインの集合、S(A) : A に毒をいれたときの犠牲者の集合であり、(※) は「すべてのワインはいずれかの奴隷が必ず試飲する。に相当する。)
295: 09/02(火)17:51 ID:fZOAs2Xe(7/11) AAS
補題 (※) n = #W > #S であるとき W の相異なる部分集合 A,B が存在して次を満たす。
(1) #A = #B = ⌈ #W/2 ⌉
(2) S(A) = S(B)
(∵) S₁ = { s∈S | #f(s) = 1 } とおく。W を最小反例とする。
#S₁ = 0 とする。すべての s について #f(s) ≧ 2 である。各 s について f(s) から2元集合 e(s) = {p(s), q(s)} ⊂ f(s) を選んでグラフ (W,E) = (W, {e(s) ; s∈S} ) を考える。グラフはe(s) の選び方で任意性があるが、この中でその一つの連結成分 G₀ = (W₀, E₀) の点の数が最大となるものをとる。このとき任意の s に対して e(s) が G₀ の辺でないなら #E₀ の最大性から f(s) は G₀ と共通元をもたない。すなわち任意の s に対して e(s) が G₀ の辺であるか、もしくは f(s) と W₀ は互いに素となる。 n₀ = #W₀ とする。
296: 09/02(火)17:52 ID:fZOAs2Xe(8/11) AAS
⌈(n₀ + β₁(G₀))/2⌉ ≧ n₀ のとき。容易に n₀ + β₁(G₀) ≦ 1 + #S ≦ n だから n₀ ≦ ⌈n/2⌉ である。よって A₀,B₀ ⊂ W、C ⊂ W \ W₀、 #A₀ = #B₀ = n₀ - 1、#C = ⌈n/2⌉ - n₀ + 1 となる相異なる A₀, B₀, C をえらぶ。A = A₀∪C、B = B₀∪C とすれば S(A) = S(A₀)∪S(C) = W₀∪S(C)、 S(B) = S(B₀)∪S(C) = W₀∪S(C) だから条件が成立する。
297: 09/02(火)17:53 ID:fZOAs2Xe(9/11) AAS
⌈(n₀ + β₁(G₀))/2⌉ < n₀ のとき。補題から #A₀ = #B₀ = ⌈(n₀ + β₁(G₀))/2⌉、S(A₀) = S(B₀) = W₀ となる相異なる A₀, B₀ がとれる。このときさらに C⊂W \ W₀ を #C = ⌈n/2⌉ - ⌈(n₀ + β₁(G₀))/2⌉ となるようにとれる。
298: 09/02(火)17:53 ID:fZOAs2Xe(10/11) AAS
(∵ ⌈n/2⌉ - ⌈(n₀ + β₁(G₀))/2⌉ ≦ n/2 - (n₀ + β₁(G₀))/2 + 1/2 より n/2 - (n₀ + β₁(G₀))/2 + 1/2 ≦ n-n₀ であれば十分だが、これは 1+n₀ ≦ β₁(G₀) + n と同値である。これが成立しないのは n₀ = n、β₁(G₀) = 0 の場合のみである。しかしこのときは C = ∅ とすればよい。) よって A = A₀∪C、B = B₀∪C とすればよい。
以上により #S₁ = 0 である最小反例はない。
299(1): 09/02(火)17:53 ID:fZOAs2Xe(11/11) AAS
#S₁ > 0 とする。s₀ ∈ S₁ をえらんで f(s₀) = {w₀} とおく。S’ = S\{s₀}、W’ = W\{w₀} とし f’(s) = f(s)\{w₀} とする。W が最小反例だから W’ の相異なる部分集合 A’,B’ で
(1) #A’ = #B’ = ⌈ #W’/2 ⌉
(2) S(A’) = S(B’)
となるものがとれる。⌈ #W’/2 ⌉ = ⌈ #W/2 ⌉ なら A = A’、B = B’ とすれば S(A) = S(A’)、S(B) = S(B’) となり矛盾する。⌈ #W’/2 ⌉ = ⌈ #W/2 ⌉ - 1 なら A = A’∪{w₀}、B = B’∪{w₀} とすればS(A) = S(A’)’∪{s₀}、S(B) = S(B’)’∪{s₀} となり矛盾する。 □
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.023s