フェルマーの最終定理の証明 (763レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
1: 与作 [] 2025/04/22(火) 18:27:47.38 ID:ZBPrKUfk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/1
729: 132人目の素数さん [] 2025/08/27(水) 14:43:03.08 ID:SaRzx/tC M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx? M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) ) =-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2 M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx =1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx =1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt (x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2 -∞<x?∞ ⇒-∞<t?∞ http://rio2016.5ch.net/test/read.cgi/math/1745314067/729
730: 与作 [] 2025/08/27(水) 17:58:40.23 ID:5h8A3Sqa n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/730
731: 与作 [] 2025/08/27(水) 17:59:13.79 ID:5h8A3Sqa n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/731
732: 与作 [] 2025/08/27(水) 17:59:48.47 ID:5h8A3Sqa nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/732
733: 132人目の素数さん [] 2025/08/28(木) 03:56:42.52 ID:Q0vsEu0I C:x=x(t),y=y(t) OP↑=r(t)=(x(t),y(t)) OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt)) Δs=|Δr|=|Δr(t+Δt)-r(t)| RΔθ≒Δs,1/R=Δθ/Δs 1/R=lim[Δt→0](Δθ/Δs)=dθ/ds dr/dt=rDt r Dt=(x Dt,y Dt) r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt)) r Dt=r ?=(x ?,y ?) r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q) Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q) ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ? http://rio2016.5ch.net/test/read.cgi/math/1745314067/733
734: 132人目の素数さん [] 2025/08/28(木) 03:57:06.57 ID:Q0vsEu0I y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6 L[y''(t)] = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - s/6 - 5/6 L[3y'(t)] = 3( sY(s) - y(0) ) = 3sY(s) - 1/2 L[2y(t)] = 2Y(s) L[e^(-t)] = 1/(s + 1) s^2Y(s) - s/6 - 5/6 - (3sY(s) -1/2) + 2Y(s) = 1/(s+1) Y(s)(s^2 - 3s + 2) - s/6 -1/3 = 1/(s+1) Y(s)(s-1)(s-2) = s/6+1/3+1/(s+1) = (s(s+1)+2(s+1)+6)/6(s+1) = (s^2 + 3s + 8)/6(s+1) Y(s) = (s^2 + 3s + 8)/6(s+1)(s-1)(s-2) = A/(s+1) + B/(s-1) + C/(s-2) s^2 + 3s + 8 = 6( A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) ) s = -1 のとき 1 - 3 + 8 = 6A(-2)(-3) 36A = 6 A = 1/6 s = 1 のとき 1 + 3 + 8 = 6B(2)(-1) -12B = 12 B = -1 s = 2 のとき 4 + 6 + 8 = 6C(3)(1) 18C = 18 C = 1 Y(s) = 1/6(s+1) - 1/(s-1) + 1/(s-2) y(t) = -e^t + e^(2t) + (1/6)e^(-t) http://rio2016.5ch.net/test/read.cgi/math/1745314067/734
735: 132人目の素数さん [] 2025/08/28(木) 03:58:28.04 ID:Q0vsEu0I f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ ?@)n=1のとき f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ =1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ =1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ =1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ =h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ ( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ h→0 f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ ?A)n=k(k=1,2,3,…)のとき f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ f^((k)(z+h)- f^((k) ) (z))/h =k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ =k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※ (a+b)^(k+1) =(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1) =a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1) (ζ-z-h)^(k+1) =(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1) (ζ-z)^(k+1)-(ζ-z-h)^(k+1) =(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1) ( f^((k) ) (z+h)- f^((k) ) (z))/h =k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ =(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ h→0 f^((k+1)) (z)=(k+1)!/(2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ http://rio2016.5ch.net/test/read.cgi/math/1745314067/735
736: 与作 [] 2025/08/28(木) 09:47:46.08 ID:6Fzp63MB n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/736
737: 与作 [] 2025/08/28(木) 09:48:42.56 ID:6Fzp63MB n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/737
738: 与作 [] 2025/08/28(木) 09:49:28.79 ID:6Fzp63MB nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/738
739: 与作 [] 2025/08/29(金) 13:57:47.58 ID:hygj4gUX n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/739
740: 与作 [] 2025/08/29(金) 15:17:34.74 ID:hygj4gUX (1)を(y-1)(y+1)=2x…(2)とおく。 y=3,x=4 http://rio2016.5ch.net/test/read.cgi/math/1745314067/740
741: 与作 [] 2025/08/29(金) 19:10:37.81 ID:hygj4gUX (1)を(y-1)(y+1)=2x…(2)とおく。 k=2,y=5,x=12 http://rio2016.5ch.net/test/read.cgi/math/1745314067/741
742: 与作 [] 2025/08/29(金) 19:12:12.93 ID:hygj4gUX (y-1)(y+1)=k2x/k k=2,y=5,x=12 http://rio2016.5ch.net/test/read.cgi/math/1745314067/742
743: 与作 [] 2025/08/29(金) 21:25:22.72 ID:hygj4gUX (y-1)(y+1)=k2x/k k=3,y=7,x=24 http://rio2016.5ch.net/test/read.cgi/math/1745314067/743
744: 132人目の素数さん [] 2025/08/29(金) 23:13:11.73 ID:4OcLYpFC k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2 なので y''(t) - 3'y(t) + 2y(t) = 0 の一般解 y0 は y0 = C1e^t + C2e^(2t) ?の特殊解をv(t)とすると v(t) = 1/(D-1)(D-2)*e^(-t) = 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t) = (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t) よって?の一般解は y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t) y(0) = C1 + C2 + 1/6 = 1/6 C1 + C2 = 0 …… ? y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t) y'(0) = C1 + C2*2 - 1/6 = 5/6 C1+ 2C2 = 1……? ??より C1 = -1, C2= 1 初期値を満たす特殊解を改めて y とおくと y(t) = -e^t +e^(2t) + (1/6)e^(-t) http://rio2016.5ch.net/test/read.cgi/math/1745314067/744
745: 132人目の素数さん [] 2025/08/29(金) 23:13:36.00 ID:4OcLYpFC D^2+1)y=1/(?cos?^3 (x) ) (D^2+1)y=0 λ^2+1=0 λ=0±i y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x) cos(x)=((e^ix+e^(-ix))/2) 1/(cos^3(x))=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3 (D^2+1) y_s=8/(e^ix+e^(-ix) )^3 (D+i)(D-i) y_s=8/(e^ix+e^(-ix) )^3 y_s=(1/(D+i))(1/(D-i)) 8/(e^ix+e^(-ix) )^3 1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix 1/D e^(-ix) 1/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-ix)/(e^ix+e^(-ix) )^3 dx e^(-ix)/(e^ix+e^(-ix) )^3 =(e^3ix e^(-ix))/(e^3ix (e^ix+e^(-ix) )^3 )=e^2ix/((e^ix )^3 (e^ix+e^(-ix) )^3 ) =e^2ix/(e^ix (e^ix+e^(-ix) ))^3 =e^2ix/(e^2ix+1)^3 ∴1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-2ix)/(e^2ix+1)^3 dx t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix ) ∫(8e^2ix)/(e^2ix+1)^3 dx=∫(8e^2ix)/t^3 dt/(2ie^2ix )=∫4/t^3 dt/i =-∫4i/t^3 dt=-4i∫t^(-3) dt =-4i ?-t?^(-2)/2=2it^(-2) =2i/(e^2ix+1)^2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/745
746: 132人目の素数さん [] 2025/08/29(金) 23:15:15.48 ID:4OcLYpFC f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ ?@)n=1のとき f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ =1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ =1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ =1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ =h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ ( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ h→0 f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ ?A)n=k(k=1,2,3,…)のとき f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ f^((k)(z+h)- f^((k) ) (z))/h =k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ =k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※ (a+b)^(k+1) =(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1) =a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1) (ζ-z-h)^(k+1) =(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1) (ζ-z)^(k+1)-(ζ-z-h)^(k+1) =(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1) ( f^((k) ) (z+h)- f^((k) ) (z))/h =k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ =(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ h→0 f^((k+1)) (z)=(k+1)!/(2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ http://rio2016.5ch.net/test/read.cgi/math/1745314067/746
747: 132人目の素数さん [] 2025/08/29(金) 23:16:11.86 ID:4OcLYpFC f(z)=1/(1-z) z=i で展開 ?@) |z-i|<√2 (1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i) 1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i)) =1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?) =(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +? =((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +? =納n=0→∞]((1+i)/2)^(n+1) (z-i)^n ※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2 ?A) |z-i|>√2の場合 |z-i|/√2=|(z-i)/(1-i)|>1 すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。 1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i)) =-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?) =-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?) =-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?) =-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?) =-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?) =-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n) ※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2 (1-i)^n=2^n/(1+i)^n http://rio2016.5ch.net/test/read.cgi/math/1745314067/747
748: 132人目の素数さん [] 2025/08/29(金) 23:16:52.41 ID:4OcLYpFC y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix ) ∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1) y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1) =(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) ) =- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x) y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x) =C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x) =(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) y_s=1/2cos(x) y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x) =C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x) =(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) http://rio2016.5ch.net/test/read.cgi/math/1745314067/748
749: 132人目の素数さん [] 2025/08/29(金) 23:19:36.16 ID:4OcLYpFC M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx? M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) ) =-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2 M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx =1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx =1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt (x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2 -∞<x?∞ ⇒-∞<t?∞ http://rio2016.5ch.net/test/read.cgi/math/1745314067/749
750: 132人目の素数さん [] 2025/08/29(金) 23:20:15.02 ID:4OcLYpFC ┌ ┐ │ a11 a12 a13 │ A = │ a21 a22 a23 │ │ a31 a32 a33 │ └ ┘ a~11 = (-1)^(1+1)|a22 a23| = |a22 a23| |a32 a33| |a32 a33|. a~12 = (-1)^(1+2)|a21 a23| = -|a21 a23| |a31 a33| |a31 a33|. a~13 = (-1)^(1+3)|a21 a22| = |a21 a22| |a31 a32| |a31 a32|. t┌ ┐ ┌ ┐ │a~11 a~12 a~13│ │a~11 a~21 a~31│ A~ = │a~21 a~22 a~23│= │a~12 a~22 a~32│ │a~31 a~32 a~33│ │a~13 a~23 a~33│ └ ┘ └ ┘. t┌ ┐ │+│a22 a23│ -│a21 a23│ +│a21 a22││ │ │a32 a33│ │a31 a33│ │a31 a32││ │ │ A~ = │-│a12 a13│ +│a11 a13│ -│a12 a22││ │ │a32 a33│ │a31 a33│ │a31 a32││ │ │ │+│a12 a13│ -│a11 a13│ +│a11 a12││ │ │a22 a23│ │a21 a23│ │a21 a22││ └ ┘ ┌ ┐ │+│a22 a23│ -│a12 a13│ +│a12 a13││ │ │a32 a33│ │a32 a33│ │a22 a23││ │ │ = │-│a21 a23│ +│a11 a13│ -│a11 a13││ │ │a31 a33│ │a31 a33│ │a21 a23││ │ │ │+│a21 a22│ -│a12 a22│ +│a11 a12││ │ │a31 a32│ │a31 a32│ │a21 a22││ └ ┘. http://rio2016.5ch.net/test/read.cgi/math/1745314067/750
751: 与作 [] 2025/08/30(土) 09:42:48.50 ID:IcDbQgDC n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/751
752: 与作 [] 2025/08/30(土) 09:43:27.06 ID:IcDbQgDC n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/752
753: 与作 [] 2025/08/30(土) 09:44:19.71 ID:IcDbQgDC nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/753
754: 132人目の素数さん [] 2025/08/30(土) 12:31:22.46 ID:GT1KZtG+ y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix ) ∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1) y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1) =(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) ) =- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x) y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x) =C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x) =(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) y_s=1/2cos(x) y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x) =C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x) =(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) http://rio2016.5ch.net/test/read.cgi/math/1745314067/754
755: 132人目の素数さん [] 2025/08/30(土) 12:31:47.21 ID:GT1KZtG+ C:x=x(t),y=y(t) OP↑=r(t)=(x(t),y(t)) OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt)) Δs=|Δr|=|Δr(t+Δt)-r(t)| RΔθ≒Δs,1/R=Δθ/Δs 1/R=lim[Δt→0](Δθ/Δs)=dθ/ds dr/dt=rDt r Dt=(x Dt,y Dt) r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt)) r Dt=r ?=(x ?,y ?) r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q) Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q) ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ? http://rio2016.5ch.net/test/read.cgi/math/1745314067/755
756: 与作 [] 2025/08/30(土) 15:11:08.92 ID:IcDbQgDC n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/756
757: 与作 [] 2025/08/30(土) 15:11:57.31 ID:IcDbQgDC n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/757
758: 与作 [] 2025/08/30(土) 15:12:33.89 ID:IcDbQgDC nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/758
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 5 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.015s