フェルマーの最終定理の証明 (314レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1763457345/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
230: 与作 [] 2025/11/28(金) 18:49:10.51 ID:NLk22RxC 補題2は使えないという話の流れ どうしてでしょうか? http://rio2016.5ch.net/test/read.cgi/math/1763457345/230
235: 132人目の素数さん [] 2025/11/28(金) 19:05:42.98 ID:IGi31x4N >>228 > どうやって?ということへの答えになっていません > それはなぜ? > > 補題からです。 >>230 > どうしてでしょうか? あなたはxが有理数になるための条件がn=2とn=3(あるいはn>2)の場合で異なることを理解できていないようです n=2の場合の右辺の2*xとn=3の場合の右辺の3*(x^2+x)の違い xと(x^2+x)が異なるので補題は使えません (y-1)(y+1)=2xの場合は(y-1)=2のときx=4で(y+1)=2xが成り立ち (y-1)=2kとしてk(有理数)を変えてもxが別の有理数になることは簡単に分かります それでは右辺のxと(x^2+x)の違いを理解するために(y-1)(y+1)=2xの右辺のxを (x^2+x)に変えた(y-1)(y+1)=2(x^2+x)という式を考えることにすると (y-1)=2のときy+1=x^2+xは4=x^2+xになりxは有理数ではないので (y-1)=2のときy+1=x^2+x (x,yは有理数)とはなりませんが (y-1)=2kとしてk>1のとき(y-1)(y+1)=2(x^2+x)が有理数解を持つかどうかが補題から分かりますか? http://rio2016.5ch.net/test/read.cgi/math/1763457345/235
236: 132人目の素数さん [sage] 2025/11/28(金) 19:27:19.51 ID:IGi31x4N >>230 > どうしてでしょうか? >>235の続き (y-1)=2のときy+1=x^2+xは4=x^2+xになりxは有理数ではないので (y-1)=2のときy+1=x^2+x (x,yは有理数)とはなりませんが (y-1)=2kとしてk>1のとき(y-1)(y+1)=2(x^2+x)が有理数解を持つかどうかが補題から分かりますか? 答え (y-1)=2kとしてk>1のとき(y-1)(y+1)=2(x^2+x)が有理数解を持つかどうかは補題から分からない y=3の場合が補題の基準(k=1)で(y-1)(y+1)=2(x^2+x), 4=x^2+xは有理数解を持たない y=4の場合 (y-1)(y+1)=2(x^2+x)は有理数解を持たない y=5の場合 (y-1)(y+1)=2(x^2+x)は有理数解を持つ その他のyが自然数の場合でxが有理数の解は y = 29, x = 20 y = 169, x = 119 y = 985, x = 696 y = 5741, x = 4059 y = 33461, x = 23660 など であるから右辺が(x^2+x)だと有理数解を持つかどうかは補題から分からない http://rio2016.5ch.net/test/read.cgi/math/1763457345/236
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.728s*