フェルマーの最終定理の証明 (835レス)
1-

1
(9): 与作 11/18(火)18:15 ID:hNUQDzxE(1/14) AAS
※ab=cdが成り立つならば、ab=kcd/kも成り立つ。a=kcのとき、b=d/kとなる。
※ab=cdが成り立たないならば、ab=kcd/kも成り立たない。a=kcのとき、b=d/kとならない。
2
(3): 与作 11/18(火)18:16 ID:hNUQDzxE(2/14) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成り立つので、(y-1)(y+1)=k2x/k…(3)も成り立つ。
(3)は(y-1)=k2のとき、(y+1)=x/kとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
3: 与作 11/18(火)18:17 ID:hNUQDzxE(3/14) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成り立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/k…(3)も成り立たない。
(3)は(y-1)=k3のとき、(y^2+y+1)=(x^2+x)/kとならない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
4
(13): 与作 11/18(火)18:18 ID:hNUQDzxE(4/14) AAS
n=4のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^4+Y^4=Z^4をy^4=(x+1)^4-x^4…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^3+y^2+y+1)=4(x^3+(3/2)x^2+x)…(2)とおく。
(2)は(y-1)=4のとき、(y^3+y^2+y+1)=(x^3+(3/2)x^2+x)とならない。
(2)は成り立たないので、(y-1)(y^3+y^2+y+1)=k4(x^3+(3/2)x^2+x)/k…(3)も成り立たない。
(3)は(y-1)=k4のとき、(y^3+y^2+y+1)=(x^3+(3/2)x^2+x)/kとならない。
∴n=4のとき、X^n+Y^n=Z^nは自然数解を持たない。
5: 与作 11/18(火)18:19 ID:hNUQDzxE(5/14) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成り立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(3)も成り立たない。
(3)は(y-1)=knのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)/kとならない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
6
(3): 与作 11/18(火)18:20 ID:hNUQDzxE(6/14) AAS
1〜5の間違い箇所を、指摘して下さい。
7
(1): 11/18(火)18:47 ID:iK4DClp4(1/6) AAS
>>6
> (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
このことの証明がありません

> (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
このことの証明がありません
特にnが大きい場合はどうするのですか?
1-
あと 828 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.019s