純粋・応用数学・数学隣接分野(含むガロア理論)21 (211レス)
純粋・応用数学・数学隣接分野(含むガロア理論)21 http://rio2016.5ch.net/test/read.cgi/math/1753002417/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
183: 132人目の素数さん [] 2025/07/27(日) 18:23:30.88 ID:BtC8baTp 頼むからサルはどっか行って その酷く醜い知能をこちらに見せないで http://rio2016.5ch.net/test/read.cgi/math/1753002417/183
185: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/27(日) 19:53:53.23 ID:6EVaf5Z4 >>183 >その酷く醜い知能をこちらに見せないで ふっふ、ほっほ 「ハイ、鏡!」w おサル=サイコパス*のピエロ(>>5) サイコパスの本領発揮かい?w(”サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む”(>>5)ww) さて 1)ωa = ∩a^、a^ = {x ∈P(a) | M(x)}、1つ無限集合 a 、P (a) は a の「冪集合」 (a^ は a の部分集合のうち、無限集合になるようなもの全てを集めた集合で a^ の全ての元の共通部分を取ります このようにして得られた無限集合 ωa は、 元の無限集合 a のとり方によらずただ1つに定まります これを単に ω と書き、 自然数全体の集合と呼びます (>>171より https://ufcpp.net/study/math/set/natural/ )) こちらの式の問題点は、>>177に指摘の通りで ”「x は無限集合である」という命題を M(x) とし”の部分であって ここを きちんと 集合の言葉で書けるかどうか? そこが問題です 2)N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}(Aは無限公理により存在する集合を任意に選んだもので、下記のペアノ公理 ja.wikipedia に 誰かが書いた式) この二つの式は、明らかに異なりますね 前者1)は、無限集合 a の 「冪集合」P (a) を経由して 自然数全体の集合 ωを定義しようとするのですが これは、一理ある 後者2)は、明らかに 「冪集合」P (a) は 経由していない から 本質的に別の式だね また、自然数の集合Nが きちんと集合論として定義されているかどうか? 特に 本来の自然数以外の(以上の)元を 含んでしまっていないか? そこが、すっきりしないから こっちはダメじゃないの?w ;p) (参考) https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 自然数の集合論的構成 N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]} ここでAは無限公理により存在する集合を任意に選んだものである http://rio2016.5ch.net/test/read.cgi/math/1753002417/185
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s